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Abstract 

Understanding fractions and decimals requires not only understanding each notation 

separately, or within-notation knowledge, but also understanding relations between notations, or 

cross-notation knowledge. Multiple notations pose a challenge for learners but could also present 

an opportunity, in that cross-notation knowledge could help learners to achieve a better 

understanding of rational numbers than could easily be achieved from within-notation 

knowledge alone. This hypothesis was tested by re-analyzing three published datasets involving 

fourth to eighth grade children from the U.S. and Finland. All datasets included measures of 

rational number arithmetic, within-notation magnitude knowledge (e.g., accuracy comparing 

fractions versus fractions and decimals versus decimals), and cross-notation magnitude 

knowledge (e.g., accuracy comparing fractions versus decimals). Consistent with the hypothesis, 

cross-notation magnitude knowledge predicted fraction and decimal arithmetic while controlling 

for within-notation magnitude knowledge. Further, relations between within-notation magnitude 

knowledge and arithmetic were not notation specific; fraction magnitude knowledge did not 

predict fraction arithmetic more than decimal arithmetic, and decimal magnitude knowledge did 

not predict decimal arithmetic more than fraction arithmetic. Implications of the findings for 

assessing rational number knowledge and learning and teaching about rational numbers are 

discussed. 

 

Keywords: numerical development, fractions, decimals, magnitude knowledge, arithmetic, cross-

notation knowledge, Integrated Theory of Numerical Development 
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Introduction 

 Rational numbers are among the most important and difficult topics children encounter in 

early math education. Over two-thirds of a nationally-representative sample of U.S. adults 

reported using rational numbers in their jobs (Handel, 2016). Further, rational number 

knowledge predicts success in algebra (Booth, Newton, & Twiss-Garrity, 2014) and general 

math achievement in high school when controlling for whole number arithmetic skill, non-verbal 

IQ, working memory, and family socio-economic status (Siegler et al., 2012). However, many 

individuals struggle with rational numbers even after years of instruction (Siegler, Thompson, & 

Schneider, 2011). 

 Unlike whole numbers, rational numbers are regularly represented using several different 

notations—fractions, decimals, and percentages. This fact poses a challenge for learners, in that 

understanding rational numbers requires not only understanding each notation on its own, or 

within-notation knowledge, but also understanding the relations between notations, or cross-

notation knowledge. Even many high school students have trouble understanding that fractions 

and decimals can represent the same numbers (Vamvakoussi & Vosniadou, 2010). However, 

multiple rational number notations may also present an opportunity: making connections 

between fractions and decimals could enable learners to achieve better understanding of, and 

proficiency with, each notation than could easily be achieved otherwise.  

 The present study tested a specific version of the above hypothesis—that cross-notation 

knowledge of fraction and decimal magnitudes contributes to fraction and decimal arithmetic 

skill. To do so, we investigated relations between cross-notation magnitude understanding and 

fraction and decimal arithmetic skill, controlling for within-notation magnitude understanding. 

Within- and cross-notation magnitude understanding were measured using magnitude 
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comparison and ordering tasks involving either one notation (e.g., comparing fractions to 

fractions) or multiple notations (e.g., comparing fractions to decimals). 

 Below, we briefly review previous research on children’s knowledge of fractions and 

decimals, including knowledge of magnitudes and knowledge of arithmetic. Next, we elaborate 

the concept of cross-notation knowledge, discuss how such knowledge might facilitate learning 

about rational numbers, and review previous research relating to cross-notation knowledge. 

Then, we describe the goals and approach of the present study in more detail. 

Children’s Knowledge of Fractions and Decimals 

 Understanding fractions and decimals requires understanding that they have magnitudes 

that can be compared, ordered, and placed on number lines (Siegler et al., 2011). Unfortunately, 

this understanding proves elusive for many children with respect to both fractions (Braithwaite & 

Siegler, 2018; Bright, Behr, Post, & Wachsmuth, 1988; Jordan, Resnick, Rodrigues, Hansen, & 

Dyson, 2017; Mazzocco & Devlin, 2008) and decimals (Desmet, Grégoire, & Mussolin, 2010; 

DeWolf, Bassok, & Holyoak, 2015; Malone, Loehr, & Fuchs, 2017; Resnick, Rinne, Barbieri, & 

Jordan, 2019; Rittle-Johnson, Siegler, & Alibali, 2001). For example, on the U.S. National 

Assessment of Educational Progress (NAEP), only 50% of eighth graders in 2007 correctly 

ordered 2/7, 5/9, and 1/12 from smallest to largest, and only 42% of eighth graders in 2005 

correctly identified a point midway between .005 and .006 on a number line as .0055 (US 

Department of Education, Institute of Education Sciences, 2005, 2007). 

 Many children also display poor proficiency with rational number arithmetic, again with 

both fractions (Byrnes & Wasik, 1991; Gabriel, Coché, et al., 2013; Hansen et al., 2015; Hecht & 

Vagi, 2012; Mack, 1995; Newton, Willard, & Teufel, 2014; Siegler et al., 2011) and decimals 

(Author, 2018; Hiebert & Wearne, 1985; Kouba et al., 1988; Rittle-Johnson & Koedinger, 2009). 
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For example, sixth graders correctly answered only 46% of fraction arithmetic problems in one 

study (Siegler & Pyke, 2013) and only 57% of decimal arithmetic problems in another study 

(Tian, Braithwaite, & Siegler, 2020a). Common arithmetic errors include adding fractions by 

separately adding their numerators and denominators (e.g., 3/5+1/4 = 4/9), passing through a 

common denominator when multiplying fractions (e.g., 3/5×1/5 = 3/5), adding digits with 

different place values when adding decimals (e.g., 4+.3 = .7), and placing the decimal point 

incorrectly when multiplying decimals (e.g., .4×.2 = .8). 

 According to the Integrated Theory of Numerical Development (Siegler & Braithwaite, 

2017; Siegler et al., 2011), understanding numerical magnitudes is critical for learning 

arithmetic. The theory therefore implies that difficulties understanding the magnitudes of 

fractions and decimals contribute to difficulties with fraction and decimal arithmetic. Consistent 

with the theory, individual differences in magnitude understanding predict differences in 

arithmetic skill for both fractions (Bailey, Hansen, & Jordan, 2017; Siegler & Pyke, 2013; 

Siegler et al., 2011; Torbeyns, Schneider, Xin, & Siegler, 2015) and decimals (Rittle-Johnson & 

Koedinger, 2009). Further, interventions designed to improve fraction magnitude understanding 

have been shown to improve fraction arithmetic skill (Dyson, Jordan, Rodrigues, Barbieri, & 

Rinne, 2018; Fuchs et al., 2013). A possible mechanism underlying these phenomena is that 

understanding the magnitudes of individual numbers enables students to evaluate whether 

candidate answers to arithmetic problems are plausible, and thereby to reject incorrect 

procedures that generate implausible answers (Braithwaite & Siegler, 2020; Siegler et al., 2011). 

Cross-Notation Knowledge of Rational Numbers 

 Much prior research has treated fractions and decimals as separate topics. Similarly, 

many math curricula devote separate chapters to fractions and decimals, and devote relatively 
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little space to relations between them (e.g., Charles et al., 2012; Dixon, Adams, Larson, & Leiva, 

2012). Knowledge of such relations, or cross-notation knowledge, is the focus of the present 

study. We argue that cross-notation knowledge merits greater attention than it has previously 

received, in part because it may confer benefits that are difficult to achieve through within-

notation knowledge alone. 

Potential Benefits of Cross-Notation Knowledge 

 First, cross-notation knowledge could enable learners to use knowledge about each 

notation to help solve problems involving the other notation. For example, to understand 

why .4×.2 = .08 rather than .8, a child might reason that 4/10×2/10 = 8/100, or more generally 

that multiplying tenths by tenths yields hundredths. As another example, a child who has not 

learned or does not remember how to solve 3/5+1/4 but knows how to solve 0.6+0.25 might 

translate the former problem into the latter to solve it. Children could use such strategies once 

they have been taught to translate between fractions and decimals, which typically occurs in 

fourth grade in the U.S., and once they have been taught—though not necessarily mastered—at 

least some fraction or decimal arithmetic procedures, which occurs mainly in fifth and sixth 

grade (CCSSI, 2010). The above approach to understanding decimal multiplication is provided in 

some math textbooks (e.g., Eureka Math; Great Minds, 2015), and both of the above strategies 

were observed in a recent study of adults’ fraction and decimal arithmetic among adults (Author, 

submitted). Individuals with stronger cross-notation knowledge may be more likely to benefit 

from such strategies. 

 Second, cross-notation knowledge could focus learners’ attention on similarities between 

fractions and decimals, leading to a deeper understanding of rational numbers. Fractions and 

decimals are superficially different; for example, adding fractions with unlike denominators 
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requires conversion to a common denominator, whereas adding decimals requires adding digits 

with the same place value. Yet, fractions and decimals have many similarities relating to general 

properties of rational numbers, such as the principle that a sum of positive numbers is larger than 

either addend. Making connections between fractions and decimals could reinforce learners’ 

understanding of these general properties, which could in turn facilitate acquisition of within-

notation knowledge. For instance, understanding the above principle could help learners avoid 

errors that violate it, such as 3/5+1/4 = 4/9 and 4+.3 = .7. 

Previous Research on Cross-Notation Knowledge 

 Several previous studies have employed tasks that assess cross-notation knowledge 

(though without using that term), such as conversion between fractions and decimals and cross-

notation comparison or ordering (Binzak & Hubbard, 2020; Ganor-Stern, 2013; Hurst & Cordes, 

2016, 2018; Mazzocco & Devlin, 2008; McMullen, Laakkonen, Hannula-Sormunen, & Lehtinen, 

2015; Van Hoof, Janssen, Verschaffel, & Van Dooren, 2014; Zhang, Fang, Gabriel, & Szűcs, 

2016). However, these studies did not analyze relations between cross-notation knowledge and 

other aspects of rational number knowledge.  

 Other studies did not assess cross-notation knowledge but hint at influences of decimal 

knowledge on fraction knowledge and vice versa that could be mediated by cross-notation 

knowledge. For example, a longitudinal study found that decimal magnitude knowledge in 

winter of fourth grade predicted fraction magnitude knowledge in spring of fourth grade when 

controlling for initial fraction magnitude knowledge (I. Resnick et al., 2019; see also McMullen 

& Van Hoof, 2020). Similarly, using a priming paradigm, Ren and Gunderson (2019) found that 

activating children’s and adults’ fraction knowledge affected subsequent performance on a 

decimal magnitude comparison task. However, an intervention study found no benefit of 
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integrated fraction/decimal instruction over fractions-only instruction for improving fraction 

outcomes among at-risk fourth graders (Malone, Fuchs, Sterba, Fuchs, & Foreman-Murray, 

2019). In summary, the role of cross-notation knowledge in children’s numerical development (if 

any) is not yet clear. 

The Present Study 

 The main goal of the present study was to test the prediction that individual differences in 

cross-notation knowledge would explain unique variance in rational number arithmetic skill 

when controlling for within-notation fraction and decimal magnitude knowledge. This prediction 

is consistent with the more general hypothesis that cross-notation knowledge confers benefits 

beyond those of within-notation knowledge alone.  The prediction builds on previous research 

that has found positive relations between individual differences in magnitude knowledge with 

fractions or decimals and arithmetic skill with the same notation (Bailey et al., 2017; Rittle-

Johnson & Koedinger, 2009; Siegler & Pyke, 2013; Torbeyns et al., 2015), consistent with the 

Integrated Theory of Numerical Development (Siegler et al., 2011).  

 Another goal was to investigate whether effects of fraction and decimal magnitude 

knowledge on arithmetic skill are notation specific. If children’s knowledge of different 

notations is highly compartmentalized, magnitude knowledge with each notation should predict 

arithmetic with the same notation more than arithmetic with the other notation, and should not 

predict arithmetic with the other notation at all when controlling for magnitude knowledge with 

that other notation. However, our hypothesis regarding cross-notation knowledge suggests that 

knowledge of each notation could help acquire proficiency with the other notation as well. To the 

extent that this is the case, within-notation magnitude knowledge of each notation could predict 
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arithmetic with both notations about equally, and could predict arithmetic with the other notation 

even when controlling for magnitude knowledge with that other notation. 

Research Approach and Analyses 

 To test these predictions, we re-analyzed data from studies of children that included 

assessments of rational number arithmetic as well as assessments of fraction magnitude 

knowledge (e.g., “1/2 > 3/4?”), decimal magnitude knowledge (e.g., “0.50 > 0.75?”), and cross-

notation magnitude knowledge (e.g., “4/5 > 0.89?”) using comparison or ordering tasks. A 

literature search by the first author identified three published studies that met these criteria, two 

conducted by the second author (Author, 2016, 2020) and one conducted by the third author 

(Author, 2018). All of these studies were included in our analyses. 

 We fit a “within-notation-only” model and a “cross-and-within-notation” model to each 

dataset, then compared the models. Both models were linear mixed models with rational number 

arithmetic accuracy as the dependent variable; grade level, fraction magnitude knowledge, and 

decimal magnitude knowledge as fixed effects; and participant as a random effect. The cross-

and-within-notation model, but not the within-notation-only model, also included cross-notation 

magnitude knowledge as a fixed effect. We expected that model comparisons would favor the 

cross-and-within-notation model and that in this model, cross-notation magnitude knowledge 

would have a positive effect on arithmetic accuracy. 

 To investigate notation-specificity of effects of magnitude knowledge on arithmetic skill, 

in the studies that included both fraction and decimal arithmetic (Studies 2 and 3), all models 

included arithmetic notation and interactions of arithmetic notation with each magnitude 

knowledge measure as fixed effects. We also considered that magnitude knowledge might 

differentially predict skill with different arithmetic operations. For example, magnitude 
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knowledge might be more related to skill with addition and subtraction than with multiplication 

and division because sums and differences of rational numbers can be estimated by composing or 

decomposing magnitudes, whereas estimation of products and quotients of rational numbers 

requires more advanced transformations such as scaling (CCSSI, 2010, 5.NF.5; Devlin, 2008). 

Therefore, in the studies whose arithmetic tasks involved multiple operations (Studies 1 and 3), 

all models included operation and interactions of operation with each magnitude knowledge 

measure as fixed effects. In the one study that included both fraction and decimal arithmetic with 

multiple operations (Study 3), the models also included the three-way interactions of arithmetic 

notation and operation with each magnitude knowledge measure as fixed effects. 

 Models were fit using both frequentist and Bayesian approaches in R (version 3.6.1; R 

Core Team, 2018). Frequentist analyses employed lmer from the lme4 package (Bates, Maechler, 

Bolker, & Walker, 2015) and lmerTest (Kuznetsova, Brockhoff, & Christensen, 2016). Models 

were fit using maximum likelihood (ML) and were compared using the Akaike Information 

Criterion (AIC) and Chi-square tests. Bayesian analyses employed brm from the brms package in 

R (Bürkner, 2017), which is a front end for Stan (Carpenter et al., 2017), a probabilistic 

programming language. Default priors from brm were used (an improper flat prior over the reals 

for fixed effects and a half student-t prior for the standard deviation of random effects); sampling 

employed the no-U-turn sampler (NUTS; Hoffman & Gelman, 2014) with 8 chains of 10,000 

iterations, including 2,000 warmup iterations, for each model. Bayesian model comparisons 

employed the leave-one-out information criterion (LOOIC), an estimate of predictive accuracy 

(Gelman, Hwang, & Vehtari, 2014), and Bayes Factors (BFs), obtained from LOO and 

bayes_factor in brms. Andraszewicz and colleagues (2015) recommend interpreting BFs 
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exceeding 1, 3, 10, 30, and 100 as indicating anecdotal, moderate, strong, very strong, and 

extremely strong evidence, respectively.  

 Bayesian analyses were included because they could, in principle, provide evidence 

favoring the null hypothesis—that is, the within-notation-only model. However, to preview the 

results, all model comparisons favored the cross-and-within-notation model. Therefore, we 

report details regarding the cross-and-within-notation models in the main text, and details 

regarding the within-notation-only models in the Supplementary Materials. For each effect in the 

cross-and-with-notation models, we report a point estimate (point estimates from Bayesian and 

frequentist analyses were identical except in one case, noted below), a 95% credible interval 

(95% CI) from the Bayesian analysis, and significance test results from the frequentist analysis.  

Study 1 

 Our first dataset came from a single time point of a longitudinal study of Finnish primary 

school students’ rational number development (Author, 2016, 2020). Participants were fourth 

through sixth graders from two schools in southwest Finland. In Finland, fraction and decimal 

magnitudes and addition and subtraction of fractions with like denominators is typically covered 

by the end of fourth grade, decimal arithmetic and more advanced fraction arithmetic is covered 

in fifth and sixth grades. Within-notation magnitude knowledge was assessed using magnitude 

comparison and ordering tasks, and cross-notation magnitude knowledge was assessed using a 

magnitude comparison task. The measure of arithmetic skill was a fraction arithmetic task, which 

included all four arithmetic operations. 
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Method 

Participants  

 Our analysis included 277 fourth (n = 94; MeanAge = 10 years, 11 months), fifth (n = 83; 

MeanAge = 11 years, 11 months), and sixth (n = 100; MeanAge = 12 years, 10 months) graders 

(138 male; 139 female). The sample represented a Finnish urban population, including students 

from lower-middle class to middle class backgrounds and from diverse ethnic backgrounds. The 

ethics board of XXX (project name: XXX), the district, and school administrations approved the 

study. 

Tasks, Stimuli, and Procedure 

 Participants completed a paper-and-pencil test of their rational number knowledge in a 

whole-class setting in their regular math classrooms. The test included assessments of magnitude 

knowledge, understanding of rational number density, and fraction arithmetic, administered in 

that order. The density assessment does not relate to the predictions tested in the present study 

and so will not be discussed further (see Author, 2020 for details on this task). Students had 45 

minutes to complete the test. 

Magnitude Knowledge. The magnitude knowledge assessment included three tasks: 

within-notation comparison, within-notation ordering, and cross-notation comparison. The 

within-notation comparison task required participants to circle the larger of two fractions (e.g., 

5/8, 4/3) or two decimals (e.g., 0.36, 0.5), or to circle both numbers if they were equal. The 

within-notation ordering task required participants to put three fractions (e.g., 6/8, 2/2, 1/3) or 

three decimals (e.g., 6.79, 6.786, 6.4) in order from smallest to largest. The cross-notation 

comparison task was identical to the within-notation comparison task except that each trial 

involved comparing one fraction and one decimal (e.g., 1/7, 0.7).  
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Each within-notation task included three fraction items and three decimal items, and the 

cross-notation comparison task included four items. Each correct answer was given one point. 

Measures of within-notation magnitude knowledge were calculated separately for fractions and 

decimals by adding scores from the comparison and ordering tasks (maximum = 6 for each 

notation). Scores on the cross-notation comparison task (maximum = 4) served as our measure of 

cross-notation magnitude knowledge. Cronbach’s alpha was .86 for fraction magnitude 

knowledge, .81 for decimal magnitude knowledge, and .78 for cross-notation magnitude 

knowledge. All measures of magnitude knowledge were converted to proportions correct and 

mean-centered for analysis. 

Fraction Arithmetic. Participants completed 12 fraction arithmetic problems, including 

7 fraction addition and subtraction items (3/5+1/5; 2/9+5/9; 2/5+3/10; 2 3/5+1/5; 4–1/2; 5 4/5–2 

2/5; 3 3/4+4) and 5 fraction multiplication and division items  (1/2×1/2; 2/3×4/5; 1 3/8×1/8; 

6/7×3/2; 1/4÷1/2) with like and unlike denominators. Each correct answer was given one point, 

with a maximum score of 7 for the addition and subtraction (Cronbach’s alpha = .75) and 5 for 

multiplication and division (Cronbach’s alpha = .71). These scores were converted to proportions 

correct separately for addition/subtraction and multiplication/division. 

Analysis 

 The within-notation-only model was a linear mixed model with accuracy on the fraction 

arithmetic tasks as the dependent variable; grade, within-notation fraction magnitude knowledge, 

within-notation decimal magnitude knowledge, arithmetic operation, and the interactions of 

fraction and decimal magnitude knowledge with arithmetic operation as fixed effects; and 

participant as a random effect. The cross-and-within-notation model included all effects that 

were included in the within-notation-only model, and also included cross-notation magnitude 
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knowledge and its interaction with arithmetic operation as fixed effects. Arithmetic operations 

were classified as either addition/subtraction or multiplication/division, which were dummy 

coded as -0.5 and 0.5 respectively1. 

Results and Discussion 

 Descriptive statistics and zero-order correlations for the measures of magnitude 

knowledge and arithmetic are shown in the Appendix (Table A1). As predicted, model 

comparisons favored the cross-and-within-notation model over the within-notation-only model, 

as indicated by lower AIC (-6.6 vs. -0.3), a significant Chi-square test (𝜒2(2) = 10.3, p = .006), 

lower LOOIC (-21.5 vs. -17.3), and BF of 2.9. 

 Details regarding the cross-and-within-notation model are shown in Table 1. As 

predicted, higher cross-notation knowledge predicted higher arithmetic accuracy. This result is 

consistent with the hypothesis that cross-notation knowledge benefits arithmetic learning, at least 

for fraction arithmetic. The absence of a cross-notation knowledge by arithmetic operation 

interaction indicates that effects of cross-notation knowledge did not differ between 

addition/subtraction and multiplication/division. 

============================ Table 1 ============================ 

 A significant main effect was also found for decimal magnitude knowledge, but not for 

fraction magnitude knowledge. Both fraction and decimal magnitude knowledge interacted with 

arithmetic operation. To investigate these interactions, we used the samples generated in the 

Bayesian analysis to calculate 95% CIs for effects of fraction and decimal magnitude knowledge 

 
1 Assigning numeric codes with a difference of 1.0 for arithmetic operation ensures that the estimated effect of 

arithmetic operation equals the difference in accuracies between arithmetic operations. Assigning numeric codes 

centered around 0.0 ensures that the estimated effect of each other predictor in the model equals the average of the 

predictor’s estimated effects for all arithmetic operations, as would be the case in ANOVA.  
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on addition/subtraction and multiplication/division accuracy2. Effects of fraction magnitude 

knowledge were larger for addition/subtraction than multiplication/division, but the 95% CIs of 

both effects included zero (addition/subtraction: estimate = 0.10, 95% CI = [-0.01, 0.21]; 

multiplication/division: estimate = -0.08, 95% CI = [-0.19, 0.03]). Effects of decimal magnitude 

knowledge were also larger for addition/subtraction than multiplication/division, and 95% CIs of 

the effects excluded zero for addition/subtraction (estimate = 0.19, 95% CI = [0.07, 0.30]) but 

not multiplication/division (estimate = 0.01, 95% CI = [-0.11, 0.13]). 

 Effects of grade and arithmetic operation were also found. Children in higher grades were 

more accurate (fourth grade = 28%, fifth grade = 39%, sixth grade = 51%), and accuracy was 

higher on addition/subtraction than multiplication/division problems (60% vs. 20%). 

Study 2 

 Study 2 analyzed data from a study of children’s rational number magnitude knowledge, 

rational number arithmetic, and pre-algebra skills previously reported in Author (2018). 

Participants were fourth to seventh graders in the USA. According to the Common Core State 

Standards for mathematics, comparison of fractions and decimals, as well as addition of fractions 

with like denominators and multiplication of fraction by a whole number, should be covered by 

the end of fourth grade, whereas decimal arithmetic and more advanced fraction arithmetic are to 

be covered in fifth and sixth grade (CCSSI, 2010). The study included both within-notation and 

cross-notation magnitude comparison tasks. The measure of arithmetic skill included fraction 

and decimal addition problems, but no other arithmetic operations. 

 
2 Effect on addition/subtraction = (main effect of magnitude knowledge) – 0.5 * (interaction with operation). 

Effect on multiplication/division = (main effect of magnitude knowledge) + 0.5 * (interaction with operation). 



CROSS-NOTATION KNOWLEDGE 

 

16 

 

Method 

Participants 

Our analysis included 39 children (Mage = 11.8 years, range: 9.8 to 14.4 years; 10 fourth 

graders, 10 fifth graders, 3 sixth graders, and 16 seventh graders; 24 boys and 15 girls), recruited 

from the Boston, MA, USA area through a variety of recruitment methods and testing locations, 

including schools, child care programs, and on-campus research lab. We do not have additional 

demographic information about the sample. Two children who were included in Author (2018) 

were excluded from the current analysis because they had missing arithmetic data, which is the 

primary purpose of the current analysis. The institutional review board of XXX approved the 

study (IRB# XXX, project name XXX). 

Tasks, Stimuli, and Procedure 

Children completed assessments of magnitude knowledge, pre-algebra, and rational 

number arithmetic in that order. The pre-algebra assessment does not relate to the predictions 

tested in the present study and so will not be discussed further (see Author (2018) for details 

about this task). The entire session occurred one-on-one between a researcher and the child, 

using a computer for the magnitude knowledge assessment and paper-and-pencil for all other 

tasks.  

Magnitude Knowledge. Magnitude knowledge was measured using a magnitude 

comparison task in which children were shown two numbers presented on a computer screen and 

asked to decide which was larger as accurately and quickly as they could by pressing the 

corresponding key on the keyboard. The task included six types of comparisons: fraction versus 

fraction, decimal versus decimal, whole number versus whole number, fraction versus decimal, 

fraction versus whole number, and decimal versus whole number.  
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 Each block consisted of 16 trials, made from four unique comparisons from two ratio 

bins, each shown twice (4×2×2 = 16). The ratio bins (larger magnitude/smaller magnitude) were 

approximately 1.5 (range: 1.35 to 1.67) and 2.5 (range: 2.20 to 2.92). The pairs of numbers 

compared in the fraction vs. fraction, decimal vs. decimal, and decimal vs. fraction blocks had 

the same magnitudes, up to rounding error. For example, the fraction vs. fraction trials included 

the comparison 3/5 vs. 2/9; the corresponding comparisons in the decimal vs. decimal and 

fraction vs. decimal blocks were 0.60 vs. 0.22 and 3/5 vs. 0.22. In the fraction vs. decimal block, 

the larger value was presented as a fraction on half the trials and as a decimal on the other half. 

Magnitude values ranged from 1/5 (0.2) to 7/2 (3.5), to include values above and below one. For 

fraction stimuli, the numerators and denominators were all between 1 and 10; for fraction vs. 

fraction comparisons, each component of each fraction differed from both components of the 

other fraction. Decimals were always presented to the hundredth digit (potentially with a 0 in the 

hundredth digit, e.g., 0.20) with an integer before the decimal point (sometimes 0). 

 Each type of comparison was presented in a separate block. The six blocks were 

presented in a random order for each participant. Although participants were encouraged to 

answer as quickly as they could, they had unlimited time and all trials were included, regardless 

of their reaction time. 

Within-notation magnitude knowledge was calculated as the proportion of trials correct 

(out of 16) on the fraction vs. fraction (Cronbach’s alpha = .77) and decimal vs. decimal 

(Cronbach’s alpha = .62) blocks, separately. Proportion correct on the fraction vs. decimal block 

(Cronbach’s alpha = .72) served as our measure of cross-notation magnitude knowledge. Data 

from blocks involving whole numbers were not included in the current analyses. As in Study 1, 

all measures of magnitude knowledge were mean-centered.  
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Rational Number Arithmetic. The rational arithmetic assessment included a fraction 

addition task and a decimal addition task. Order of these two tasks was counterbalanced between 

participants. 

The fraction addition task included five fraction addition problems (2/3+5/6; 2/5+3/4; 

12+4/7; 5/8+2/4; 3/9+2/3) presented in a booklet with enough space between problems to 

workout solutions and provide an answer. Problems were presented horizontally, with fractions 

presented in their formal upright notation. All problems involved fractions with different 

denominators. Children were able to take as long as they needed. Performance was scored as the 

proportion of problems correct (out of 5; Cronbach’s alpha = .95) and any correct answer was 

accepted (it did not need to be in any particular format or specific simplified fraction).  

The decimal addition task included five decimal addition problems (0.5+0.38; 0.21+0.63; 

0.78+0.19; 0.45+0.8; 0.53+0.49) presented in a booklet with enough space between problems to 

workout solutions and provide an answer. Problems were presented horizontally. Three problems 

involved addends that both had two decimal digits, and two problems involved one addend with 

two decimal digits and one addend with one decimal digit. Children were able to take as long as 

they needed. Performance was scored as the proportion of problems correct (out of 5; 

Cronbach’s alpha = .64) and any correct answer was accepted. 

Analysis 

 The within-notation-only model was a linear mixed model with accuracy on the 

arithmetic assessment as the dependent variable; grade, within-notation fraction magnitude 

knowledge, within-notation decimal magnitude knowledge, arithmetic notation, and the 

interactions of fraction and decimal magnitude knowledge with arithmetic notation as fixed 

effects; and participant as a random effect. The cross-and-within-notation model included all 
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effects that were included in the within-notation-only model as well as cross-notation magnitude 

knowledge and its interaction with arithmetic notation as fixed effects. In all analyses, fraction 

and decimal arithmetic were dummy coded as -0.5 and 0.5 respectively3. 

Results and Discussion 

 Descriptive statistics and zero-order correlations for the measures of magnitude 

knowledge and arithmetic are shown in the Appendix (Table A2). As in Study 1, model 

comparisons favored the cross-and-within-notation model, as indicated by lower AIC (30.5 vs. 

33.4), a significant Chi-square test (𝜒2(2) = 6.8, p = .033), lower LOOIC (30.4 vs. 31.6), and BF 

of 22.0. 

 Details regarding the cross-and-within-notation model are shown in Table 2. As 

predicted, higher cross-notation magnitude knowledge predicted higher arithmetic accuracy, 

replicating the main finding of Study 1. Effects of fraction and decimal magnitude knowledge 

were not significant, and no interactions reached significance. Thus, there was not statistically 

significant evidence that fraction magnitude knowledge relates more strongly to fraction than 

decimal arithmetic or that decimal magnitude knowledge relates more strongly to decimal than 

fraction arithmetic. 

============================ Table 2 ============================ 

 Finally, significant effects of grade and arithmetic notation were also found. Children in 

higher grades were more accurate (fourth grade = 48%, fifth grade = 82%, sixth grade = 80%, 

seventh grade = 85%). Accuracy was higher on decimal than fraction arithmetic (84% vs. 65%). 

 
3 Assigning numeric codes with a difference of 1.0 for arithmetic notation implies that the estimated effect of 

arithmetic operation equals the difference in accuracies between arithmetic notations. Assigning numeric codes 

centered around 0.0 implies that the estimated effect of each other predictor in the model equals the average of the 

predictor’s estimated effects for both arithmetic notations, as would be the case in ANOVA. 
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Study 3 

The third dataset came from a single time point of a longitudinal study of middle school 

students’ rational number development (Author, 2019, 2020). Participants were seventh and 

eighth graders in the USA, where formal instruction in fractions and decimals is typically 

completed prior to seventh grade (CCSSI, 2010). The magnitude knowledge assessment 

employed within-notation ordering tasks with fractions and decimals, and a cross-notation 

ordering task. The arithmetic assessment in this study included all four operations with both 

fractions and decimals. 

Methods 

Participants  

 Our analysis included 394 children (232 seventh graders and 162 eighth graders; 209 

females and 185 males). All participants were from a single school in Gainesville, FL, USA, 

which was made up of students who were identified as 51% white, 28% African American, 11% 

Hispanic, and 5% Asian in district records; 43% of students at the school were eligible for free or 

reduced lunch. All participants had parental consent to participate in the study and gave their 

own assent before participating. The ethics board of XXX (project name: XXX), the district, and 

school administrations approved the study. 

Tasks, Stimuli, and Procedure 

 Participants completed a series of assessments of various aspects of rational number 

knowledge (detailed in Author, 2020). Only the magnitude knowledge assessment and rational 

number arithmetic assessment will be examined in the present study. The arithmetic assessment 

was completed immediately prior to the magnitude knowledge assessment. Students had 50 
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minutes to complete all assessments. The assessments were administered in whole class format 

during students’ regular science class by the second author. 

Magnitude Knowledge. The magnitude knowledge assessment included fraction 

ordering and decimal ordering tasks, which served as our measures of within-notation magnitude 

knowledge, and a cross-notation ordering task, which served as our measure of cross-notation 

magnitude knowledge. Each task included two items. Each item required participants to put 

either three or four numbers in order from smallest to largest. The fraction items were {5/8, 

11/37, 3/4} and {6/12, 5/7, 2/6, 2/3}, the decimal items were {7.351, 7.8, 7.09, 7.71} and {0.68, 

0.29, 0.351, 0.5}, and the mixed items were {0.5, 1/4, 5/100, 0.356} and {13/52, 0.111, 2/3, 0.8}. 

Because each task included only two items, but each item required multiple pairwise 

comparisons, to increase the captured variance across participants, participants received one 

point for each pair of numbers that they ordered correctly. For example, for the item {5/8, 11/37, 

3/4}, participants received 1 point for correctly ordering each of the following pairs of numbers: 

5/8 vs. 11/37, 5/8 vs. 3/4, and 11/37 vs. 3/4. The maximum possible scores were 9 for fractions 

(Cronbach’s alpha = .93) and 12 for decimals (Cronbach’s alpha = .95). For the cross-notation 

magnitude knowledge task, only cross-notation pairs (e.g. 0.5 vs. 1/4 but not 1/4 vs. 5/100) were 

scored, for a maximum of 8 points for cross-notation magnitude knowledge (Cronbach’s alpha 

= .80). As in Studies 1 and 2, magnitude knowledge scores were converted to proportions correct 

and mean-centered. 

Rational Number Arithmetic. Participants completed 24 rational number arithmetic 

problems. Items included 12 fraction arithmetic items (2/3−1/3; 4/7÷1/2; 3/4×1/5; 8 1/2÷4 1/8; 

5/7−1/2; 1/5+2/3; 7/8+2/8; 2 3/4+4 1/8; 2 6/7+5 1/2; 5/8÷3/8; 3 2/3−3/4; 3/5×1/5) and 12 

decimal arithmetic items (1.05×0.2; 0.71−0.4; 0.11+0.7; 5.29−4.2; 3.4+1.02; 0.38−0.14;0.4+0.2; 
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0.9÷0.3; 0.4×0.52; 0.111×0.097; 3.06×5.3; 0.84÷0.4). Each correct answer was given one point. 

Scores on each combination of notation (fraction, decimal) and arithmetic operation 

(addition/subtraction, multiplication/division) were converted to proportions correct for analysis. 

Cronbach’s alpha was .86 for fraction addition/subtraction, .67 for fraction 

multiplication/division, .73 for decimal addition/subtraction, and .78 for decimal 

multiplication/division. 

Analysis 

 The within-notation-only model was a linear mixed model with accuracy on the 

arithmetic assessment as the dependent variable; grade, within-notation fraction magnitude 

knowledge, within-notation decimal magnitude knowledge, arithmetic operation, arithmetic 

notation, the interaction of operation and notation, the interactions of fraction and decimal 

magnitude knowledge with arithmetic operation and arithmetic notation, and the three-way 

interactions of fraction and decimal magnitude knowledge with both operation and notation as 

fixed effects; and participant as a random effect. The cross-and-within-notation model included 

all effects that were included in the within-notation-only model as well as cross-notation 

magnitude knowledge, its interactions with operation and notation, and the three-way interaction 

of cross-notation magnitude knowledge with both operation and notation. As in Study 1, 

arithmetic operation was dummy-coded as -0.5 for addition or subtraction and 0.5 for 

multiplication or division, and as in Study 2, arithmetic notation was dummy-coded as -0.5 for 

fraction arithmetic and 0.5 for decimal arithmetic. 

Results and Discussion 

 Descriptive statistics and zero-order correlations for the measures of magnitude 

knowledge and arithmetic are shown in the Appendix (Table A3). As in Studies 1 and 2, all 
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model comparisons favored the cross-and-within-notation model, as indicated by lower AIC 

(185.5 vs. 201.2), a significant Chi-square test (𝜒2(4) = 23.7, p < .001), lower LOOIC (46.7 vs. 

50.4), and BF of 63.9. 

 Details regarding the cross-and-within-notation model are shown in Table 3. As 

predicted, cross-notation magnitude knowledge positively predicted arithmetic accuracy. No 

interactions involving cross-notation magnitude knowledge were found. Thus, cross-notation 

magnitude knowledge had about equally strong relations to fraction and decimal arithmetic and 

to accuracy with different arithmetic operations. 

============================ Table 3 ============================ 

 The main effect of fraction magnitude knowledge did not reach significance, but a three-

way interaction of fraction magnitude knowledge, arithmetic operation, and arithmetic notation 

was found. To investigate this interaction, we used the samples generated in the Bayesian 

analysis to calculate estimated effects of fraction magnitude knowledge, and 95% CIs thereof, 

for each combination of arithmetic operation and notation4. The 95% CI of the effect on fraction 

addition/subtraction excluded zero (estimate = 0.16, 95% CI = [0.03, 0.29]), whereas the 95% 

CIs of the effects on other problem types included zero (fraction multiplication/division: estimate 

= -0.05, 95% CI = [-0.18, 0.08]; decimal addition/subtraction: estimate = 0.02, 95% CI = [-0.11, 

0.15]; decimal multiplication/division: estimate = 0.09, 95% CI = [-0.04, 0.22]). 

 
4 Effect on fraction addition/subtraction = (main effect of magnitude knowledge) – 0.5 * (interaction with operation) 

– 0.5 * (interaction with notation) + 0.25 * (three-way interaction). 

Effect on fraction multiplication/division = (main effect of magnitude knowledge) + 0.5 * (interaction with 

operation) – 0.5 * (interaction with notation) – 0.25 * (three-way interaction). 

Effect on decimal addition/subtraction = (main effect of magnitude knowledge) – 0.5 * (interaction with operation) 

+ 0.5 * (interaction with notation) – 0.25 * (three-way interaction).  

Effect on decimal multiplication/division = (main effect of magnitude knowledge) + 0.5 * (interaction with 

operation) + 0.5 * (interaction with notation) + 0.25 * (three-way interaction). 
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 An effect of decimal magnitude knowledge was also found, qualified by an interaction 

with arithmetic operation. We investigated the interaction by calculating means and 95% CIs of 

effects of decimal magnitude knowledge on addition/subtraction accuracy and 

multiplication/division accuracy, as in Study 1. Effects of decimal magnitude knowledge were 

larger for addition/subtraction (estimate = 0.34, 95% CI = [0.24, 0.44]) than 

multiplication/division (estimate = 0.18, 95% CI = [0.09, 0.29]), but in contrast to Study 1, 95% 

CIs for both effects excluded zero. Effects of decimal magnitude knowledge on fraction 

arithmetic did not differ from effects of decimal magnitude knowledge on decimal arithmetic. 

 Finally, effects of arithmetic operation and arithmetic notation were found, indicating that 

accuracy was higher on addition/subtraction than multiplication/division as in Study 1, and was 

higher on decimal than fraction arithmetic as in Study 2. These effects were qualified by an 

operation by notation interaction, indicating that for addition/subtraction, accuracy was higher 

with decimals than fractions (fractions: 41%, decimals: 66%), whereas the opposite was true for 

multiplication/division (fractions: 36%, decimals: 24%).  

 In contrast to Studies 1 and 2, there was no effect of grade. This null result may reflect 

the fact that participants in Study 3 were in seventh or eighth grade, during which rational 

number arithmetic is not a focus of instruction. Studies 1 and 2 included children in fourth, fifth, 

and sixth grades, during which rational number arithmetic is a major focus of instruction. 

Combined Analyses 

 Results of Studies 1, 2, and 3 were broadly consistent but differed in some details. For 

example, not all model comparisons favored the cross-and-within-notation model equally 

strongly (BFs = 2.9, 22.0, and 63.9 in Studies 1, 2, and 3 respectively), and some effects were 

found in only some studies. To address these issues, pooled data from all three studies were 
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submitted to a within-notation-only model and a cross-and-within-notation model. Predictors 

were as in Study 3 except that experiment was included as a random effect, with participants 

nested within experiments. Model comparisons favored the cross-and-within-notation model, as 

indicated by lower AIC (426.8 vs. 456.0), a significant Chi-square test (𝜒2(4) = 37.2, p < .001), 

lower LOOIC (293.9 vs. 310.0), and BF of 34,376.7. This BF indicates extremely strong 

evidence for the cross-and-within-notation model (Andraszewicz et al., 2015). 

 Details regarding the cross-and-within-notation model are shown in Table 4. Significant 

effects were the same as in Study 3, with the exception that an effect of grade appeared in this 

analysis but not in Study 3. Cross-notation magnitude knowledge predicted arithmetic accuracy 

and did not interact with any other predictor. Interactions involving within-notation magnitude 

knowledge did appear, and were investigated as in Study 3, yielding very similar results. The 

effect of fraction magnitude knowledge was credibly greater than zero for fraction 

addition/subtraction (estimate = 0.13, 95% CI = [0.04, 0.22]) but not for any other problem 

category (fraction multiplication/division: estimate = -0.07, 95% CI = [-0.16, 0.02]; decimal 

addition/subtraction: estimate = 0.02, 95% CI = [-0.11, 0.14]; decimal multiplication/division: 

estimate = 0.08, 95% CI = [-0.04, 0.21]). The effect of decimal magnitude knowledge was larger 

for addition/subtraction (estimate = 0.27, 95% CI = [0.19, 0.35]) than for multiplication/division 

(estimate = 0.13, 95% CI = [0.05, 0.21]) but was credibly greater than zero in both cases. 

============================ Table 4 ============================ 

General Discussion 

 The present study investigated relations between individual differences in magnitude 

knowledge and individual differences in rational number arithmetic skill. In contrast to previous 

studies, which investigated such relations primarily using within-notation measures of magnitude 
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knowledge, the present study estimated unique effects of both cross-notation and within-notation 

magnitude knowledge. Below, we review the key findings and discuss their implications for the 

role of cross-notation knowledge and within-notation knowledge in learning about rational 

numbers, instruction in rational numbers, and math learning in general. 

The Role of Cross-Notation Knowledge in Learning About Rational Numbers 

 Individual differences in cross-notation magnitude knowledge predicted arithmetic skill 

with rational numbers while controlling for within-notation magnitude knowledge. To our 

knowledge, the present study is the first to show this effect. Attesting to the robustness of the 

effect, it appeared in three datasets that involved children of different ages and nationalities, 

different measures of magnitude knowledge, and different measures of rational number 

arithmetic. The effect did not vary as a function of arithmetic notation or arithmetic operation. 

 Many measures of children’s knowledge of rational number magnitudes have relied 

exclusively on within-notation tasks, such as fraction magnitude comparison (Fazio, DeWolf, & 

Siegler, 2016; Gabriel, Szucs, & Content, 2013; Meert, Grégoire, & Noël, 2010), fraction 

number line estimation (Booth et al., 2014; Resnick et al., 2016), decimal magnitude comparison 

(DeWolf, Grounds, Bassok, & Holyoak, 2014; Roell, Viarouge, Houdé, & Borst, 2017), or 

decimal number line estimation (Durkin & Rittle-Johnson, 2015; Rittle-Johnson et al., 2001). 

The present findings demonstrate that purely within-notation magnitude tasks may fail to capture 

important aspects of individual differences, and therefore suggest that it could be useful to 

include cross-notation tasks in assessments of rational number magnitude knowledge. Related, it 

could also be useful to investigate children’s uses of cross-notation knowledge, such as 

translating between notations, when performing within-notation tasks (e.g., Siegler et al., 2011). 
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 Which aspects of individual differences are captured by cross-notation magnitude tasks 

but are not captured, or are captured less well, by differences in accuracy on within-notation 

magnitude tasks? One possibility is that cross-notation tasks tap into children’s conceptual 

understanding of fraction-decimal equivalence and their procedural skill at converting fractions 

into decimals and decimals into fractions. For example, when asked to compare 0.5 and 1/4, a 

child might reason that 0.5 = 1/2 and 1/2 > 1/4 so 0.5 > 1/4. Alternatively, the child might reason 

that 1/4 = 0.25 and 0.25 < 0.5 so 1/4 < 0.5.  

 Another possibility is that cross-notation tasks tap into analog magnitude representations 

that ground children’s understanding of both fraction and decimal magnitudes (Matthews, Lewis, 

& Hubbard, 2016; Zhang et al., 2016). Binzak and Hubbard (2020) found that adults perform 

cross-notation comparisons faster and more accurately as the distance between the to-be-

compared numbers increases, consistent with reliance on analog magnitude representations 

during such comparisons. However, distance effects also appeared for within-notation 

comparisons, and were generally as large for fraction versus fraction comparisons as for cross-

notation comparisons. Thus, within-notation and cross-notation comparisons likely both elicit 

similar levels of reliance on analog magnitude representations. It remains to be seen whether 

such representations are involved in the aspects of individual differences that are uniquely 

captured by cross-notation tasks. 

 Both accounts of cross-notation magnitude knowledge are consistent with the possibility 

that this knowledge has a causal effect on rational number arithmetic. First, conversion between 

fractions and decimals could enable children to use knowledge of each notation to reason about 

arithmetic problems involving the other notation. For example, a child who has this ability, when 

presented .4×.2, could reason that .4×.2 = 4/10×2/10 = 8/100 = .08, thus avoiding the common 
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error .4×.2 = .8. Second, analog magnitude representations could enable children to evaluate 

answers to arithmetic problems based on plausibility. For example, a child who can form an 

analog magnitude representation of 3/5+1/4 might recognize that the common incorrect response 

4/9 is implausibly small. As these examples illustrate, magnitude knowledge could help children 

avoid common errors in rational arithmetic, thus increasing the likelihood of learning correct 

procedures and concepts. 

 In principle, variables not included in our analyses could account for some or all of the 

variance shared by cross-notation magnitude knowledge and rational number arithmetic. 

However, many variables that might play such a role are also correlated with fraction and 

decimal magnitude knowledge, for example general math achievement, nonverbal reasoning, 

working memory, and vocabulary (Bailey et al., 2017; Malone et al., 2017; Resnick et al., 2019; 

Siegler et al., 2012). The fact that our analyses controlled for fraction and decimal magnitude 

knowledge reduces the likelihood that such variables completely explain the relations that were 

found between cross-notation magnitude knowledge and arithmetic skill. Future research should 

further assess this possibility by controlling for a more extensive set of covariates than were 

included in the present study and directly testing the possibility of a causal relation. 

The Role of Within-Notation Knowledge in Learning About Rational Numbers 

 In principle, relations between within-notation magnitude knowledge and arithmetic 

could be notation-specific, with fraction magnitude knowledge related specifically to fraction 

arithmetic and decimal magnitude knowledge related specifically to decimal arithmetic. This 

intuitively plausible pattern of relations is what would be expected if children’s knowledge of 

rational numbers is compartmentalized by notation, with knowledge of magnitudes and 

knowledge of arithmetic being connected within each compartment. However, the present 
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findings did not display such a pattern. Fraction magnitude knowledge did not predict fraction 

arithmetic more strongly than decimal arithmetic, and decimal magnitude knowledge did not 

predict decimal arithmetic more strongly than fraction arithmetic. 

 A possible explanation for these results is that within-notation measures of magnitude 

knowledge tap into a general understanding of rational number magnitudes that is not specific to 

either notation and that is related to arithmetic proficiency with both notations. This general 

understanding could include analog representations of numerical magnitudes, as mentioned 

above (Binzak & Hubbard, 2020; Matthews et al., 2016; Zhang et al., 2016), as well as concepts 

and principles that apply to both fractions and decimals, such as the concept of representing 

numerical magnitudes as positions on a number line or the principle that a sum of positive 

numbers is greater than either addend. The fact that, in the present study, performance on 

decimal magnitude tasks predicted arithmetic skill more consistently than performance on 

fraction magnitude tasks predicted arithmetic skill could be because decimal magnitude tasks are 

more sensitive measures of general magnitude understanding than fraction magnitude tasks are, a 

possibility worth exploring in the future. 

 In our combined analysis, fraction magnitude knowledge uniquely predicted accuracy 

with fraction addition and subtraction, but not with fraction multiplication and division. 

Similarly, decimal magnitude knowledge predicted addition and subtraction accuracy more 

strongly than multiplication and division accuracy. These results may reflect students being more 

likely to think about numerical magnitudes in the context of addition and subtraction than 

multiplication and division, perhaps because addition and subtraction transparently involve 

composition and decomposition of magnitudes. Consistent with this explanation, most middle-

school children know that adding positive fractions or decimals “makes bigger” and subtracting 
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them “makes smaller,” whereas far fewer correctly understand how multiplication or division by 

fractions or decimals affects numerical magnitudes (Lortie-Forgues & Siegler, 2017; Siegler & 

Lortie-Forgues, 2015). 

Relations Between Within- and Cross-Notation Knowledge 

 Distinguishing between within- and cross-notation knowledge of rational numbers 

naturally leads to the question of how these types of knowledge relate to each other. We propose 

an iterative model in which each form of knowledge contributes to development of the other. 

Initially, children likely primarily acquire within-notation knowledge, including notation-specific 

concepts such as numerator and denominator (for fractions) and place value (for decimals). Such 

knowledge may create a foundation for subsequent development of cross-notation knowledge; 

for example, understanding the concepts of numerator and denominator provides a basis for 

converting fractions into decimals via division of numerator by denominator. Cross-notation 

knowledge may lead to further improvements in within-notation knowledge by one or both of the 

mechanisms proposed in the Introduction: (1) learners using one notation to help understand the 

other and (2) similarities between fractions and decimals drawing attention to general properties 

of rational numbers. Our iterative model implies that individual differences in each type of 

knowledge should predict improvements in the other type of knowledge both over time and after 

intervention. Future research should test these predictions. 

 The above proposal is compatible with and extends the Integrated Theory of Numerical 

Development (Siegler & Braithwaite, 2017). According to the theory, numerical development 

during middle childhood involves children integrating their knowledge of different types of 

numbers into a unified framework, represented by the number line. Previous formulations of the 

theory have emphasized one aspect of this process of integration, namely integrating rational 
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number knowledge with whole number knowledge. The iterative model described above draws 

attention to a complementary aspect of the process, namely integrating knowledge of fractions 

and knowledge of decimals, and implies that this aspect of integration may lead to refinements in 

knowledge of fractions, decimals, and rational numbers in general. Thus, consideration of cross-

notation knowledge permits more detailed description of the developmental processes proposed 

by the Integrated Theory. 

Implications for Instruction in Rational Numbers 

 If, as proposed, connections between fractions and decimals can facilitate learning 

rational arithmetic, then students might benefit from instruction that explicitly relies on such 

connections during instruction. For example, a student who incorrectly claims that 3/5+1/4 = 4/9 

might benefit from a teacher pointing out that 3/5+1/4 = 0.6+0.25 = 0.85, and that 4/9 is much 

smaller than 0.85. Similarly, a student who incorrectly claims that .4×.2 = .8 might benefit from 

a teacher showing that .4×.2 = 4/10×2/10 = 8/100, and that 8/100 = 0.08, not 0.8. As these 

examples illustrate, making connections between fractions and decimals could help remediate 

misconceptions and encourage integration of previously encountered information.  

 The examples also illustrate how instruction that relies on connections between fractions 

and decimals may require prior knowledge on the part of students to be effective. For example, 

explaining .4×.2 by referring to 4/10×2/10 assumes that students know how to multiply a fraction 

by a fraction, a fifth grade topic in US schools (CCSSI, 2010). Thus, this explanation is most 

likely to be useful in fifth grade after fraction multiplication has been covered, or in sixth grade. 

Similarly, explaining 3/5+1/4 by referring to 0.6+0.25 is most likely to be useful in fifth grade 

after covering how to add decimals with unequal numbers of decimal digits (CCSSI, 2010), or in 

sixth grade. Educators who use such approaches should ensure that children have sufficient prior 
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knowledge to benefit from the instruction, and studies testing interventions that use such 

approaches should also test whether prior knowledge moderates the effects of the interventions. 

 This perspective may help to interpret results of a recent study that investigated effects of 

emphasizing cross-notation knowledge when teaching about fractions and decimals (Malone et 

al., 2019). At-risk fourth graders were randomly assigned to a business-as-usual control 

condition; a fractions-only intervention; or an integrated intervention that covered fractions, 

decimals, and connections between them. Fraction magnitude knowledge and fraction arithmetic 

improved more in both experimental conditions than in the control condition, but the integrated 

intervention did not lead to greater improvement on these measures than the fractions-only 

intervention. A possible explanation is that participants’ knowledge of decimal magnitudes was 

insufficient to help them benefit from the cross-notation instruction. Consistent with this 

possibility, accuracy on a decimal magnitude task was rather low at pretest (11%) and still low at 

posttest (36%), though higher than at pretest. Students with greater decimal magnitude 

knowledge might be more able to leverage that knowledge to help understand fractions in the 

context of an integrated intervention. 

Implications for Math Learning in General 

 The present study’s emphasis on cross-notation knowledge aligns well with research that 

emphasizes the importance of understanding and flexibly using multiple external representations 

(MERs) when learning and doing math (Ainsworth, 2006). Previous research on MERs has 

largely emphasized connections between symbolic and graphical representations or between 

multiple graphical representations (e.g., Acevedo Nistal, Van Dooren, & Verschaffel, 2013; 

Ainsworth, 2006; Braithwaite & Goldstone, 2013), such as between fractions and number lines, 

fractions and pie charts, or number lines and pie charts (Rau & Matthews, 2017). The present 
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findings suggest that connections between multiple symbolic representations may also play an 

important role in math education. 

 Although the present study focused on cross-notation knowledge involving fractions and 

decimals, cross-notation knowledge is a more general concept. It also includes, to name a few, 

knowledge of relations of fractions and decimals to percentages and ratios; relations between 

different units of measure; relations among different notations for large whole numbers, such as 

4,100,000, 4.1E6, and 4.1×106; and relations between degree and radian notations for the sizes of 

angles. In each example, understanding and flexibly using different notations requires relatively 

deep understanding of the concepts that the notations represent, but the effort to achieve cross-

notation knowledge may also help learners to achieve such deep understanding and improve 

performance in related tasks. Future research should test this possibility in a wider range of 

mathematical domains. 

Limitations 

 One limitation of the present study is that our literature search was not exhaustive. Other 

studies may exist that met our criteria for inclusion but were not included in the present study. 

Related, we did not include data on within-notation magnitude knowledge obtained using 

number line estimation tasks. This exclusion may have negatively biased our estimates of effects 

of within-notation magnitude knowledge on arithmetic, because arithmetic accuracy is more 

strongly correlated with number line estimation than with comparison (Schneider et al., 2018). 

Our analyses may also have underestimated effects of cross-notation knowledge because we did 

not include measures of cross-notation knowledge involving percentages. Percentages offer 

distinct affordances from both fractions and decimals (Tian, Braithwaite, & Siegler, 2020b), so 

knowledge of relations between fractions and percentages, and between decimals and 
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percentages, may make unique contributions to arithmetic development (Moss & Case, 1999). 

Future research should investigate the unique contributions of within- and cross-notation 

magnitude knowledge to rational number arithmetic using a wider range of datasets with more 

varied measures of both types of magnitude knowledge. 

Conclusion 

 Cross-notation knowledge is an important aspect of mathematical knowledge in general 

and rational number knowledge in particular. The present study shows that cross-notation 

knowledge of rational number magnitudes captures variation among individuals that is not fully 

captured by within-notation measures of magnitude knowledge and that predicts individual 

differences in rational arithmetic proficiency. Thus, it could be useful to include cross-notation 

tasks in assessments of rational number knowledge. Further, future research should explore the 

possibility of using connections between fractions and decimals to improve children’s 

understanding of both notations individually and rational number knowledge more generally. 

References 

Acevedo Nistal, A., Van Dooren, W., & Verschaffel, L. (2013). Improving students’ 

representational flexibility in linear-function problems: an intervention. Educational 

Psychology, (September 2013), 1–24. https://doi.org/10.1080/01443410.2013.785064 

Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple 

representations. Learning and Instruction, 16(3), 183–198. 

Andraszewicz, S., Scheibehenne, B., Rieskamp, J., Grasman, R., Verhagen, J., & Wagenmakers, 

E.-J. (2015). An introduction to Bayesian hypothesis testing for management research. 

Journal of Management, 41(2), 521–543. https://doi.org/10.1177/0149206314560412 

Author. (submitted).  



CROSS-NOTATION KNOWLEDGE 

 

35 

 

Author. (2016). 

Author. (2018). 

Author. (2019). 

Author. (2020).  

Bailey, D. H., Hansen, N., & Jordan, N. C. (2017). The codevelopment of children’s fraction 

arithmetic skill and fraction magnitude understanding. Journal of Educational Psychology, 

109(4), 509–519. https://doi.org/10.1037/edu0000152 

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models 

using lme4. Journal of Statistical Software, 67(1), 1–48. 

https://doi.org/10.18637/jss.v067.i01 

Binzak, J. V., & Hubbard, E. M. (2020). No calculation necessary: Accessing magnitude through 

decimals and fractions. Cognition, 199(February), 104219. 

https://doi.org/10.1016/j.cognition.2020.104219 

Booth, J. L., Newton, K. J., & Twiss-Garrity, L. K. (2014). The impact of fraction magnitude 

knowledge on algebra performance and learning. Journal of Experimental Child 

Psychology, 118, 110–118. https://doi.org/10.1016/j.jecp.2013.09.001 

Braithwaite, D. W., & Goldstone, R. L. R. L. (2013). Integrating formal and grounded 

representations in combinatorics learning. Journal of Educational Psychology, 105(2), 666–

682. https://doi.org/10.1037/a0032095 

Braithwaite, D. W., & Siegler, R. S. (2018). Developmental changes in the whole number bias. 

Developmental Science, 21(2), e12541. https://doi.org/10.1111/desc.12541 

Braithwaite, D. W., & Siegler, R. S. (2020). Putting fractions together. Journal of Educational 

Psychology. 



CROSS-NOTATION KNOWLEDGE 

 

36 

 

Bright, G. W., Behr, M. J., Post, T. R., & Wachsmuth, I. (1988). Identifying fractions on number 

lines. Journal for Research in Mathematics Education, 19(3), 215–232. 

Bürkner, P. C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal 

of Statistical Software, 80(1). https://doi.org/10.18637/jss.v080.i01 

Byrnes, J. P., & Wasik, B. A. (1991). Role of conceptual knowledge in mathematical procedural 

learning. Developmental Psychology, 27(5), 777–786. https://doi.org/10.1037/0012-

1649.27.5.777 

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., … Riddell, 

A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 

76(1). https://doi.org/10.18637/jss.v076.i01 

Charles, R., Caldwell, J., Cavanagh, M., Chancellor, D., Copley, J., Crown, W., … Van der 

Walle, J. (2012). enVisionMATH (Common Core edition). Glenview, IL: Pearson 

Education, Inc. 

Common Core State Standards Initiative. (2010). Common core state standards for mathematics. 

Washington, D.C.: National Governors Association Center for Best Practices and the 

Council of Chief State School Officers. Retrieved from http://www.corestandards.org/math 

Desmet, L., Grégoire, J., & Mussolin, C. (2010). Developmental changes in the comparison of 

decimal fractions. Learning and Instruction, 20(6), 521–532. 

https://doi.org/10.1016/j.learninstruc.2009.07.004 

Devlin, K. (2008). It ain’t no repeated addition. Retrieved from 

https://www.maa.org/external_archive/devlin/devlin_06_08.html 

DeWolf, M., Bassok, M., & Holyoak, K. J. (2015). From rational numbers to algebra: Separable 

contributions of decimal magnitude and relational understanding of fractions. Journal of 



CROSS-NOTATION KNOWLEDGE 

 

37 

 

Experimental Child Psychology, 133, 72–84. https://doi.org/10.1016/j.jecp.2015.01.013 

DeWolf, M., Grounds, M. A., Bassok, M., & Holyoak, K. J. (2014). Magnitude comparison with 

different types of rational numbers. Journal of Experimental Psychology: Human 

Perception and Performance, 40(1), 71–82. https://doi.org/10.1037/a0032916 

Dixon, J. K., Adams, T. L., Larson, M., & Leiva, M. (2012). GO MATH! (Common Core 

edition). Orlando, FL: Houghton Mifflin Harcourt Publishing Company. 

Durkin, K., & Rittle-Johnson, B. (2015). Diagnosing misconceptions: Revealing changing 

decimal fraction knowledge. Learning and Instruction, 37, 21–29. 

https://doi.org/10.1016/j.learninstruc.2014.08.003 

Dyson, N. I., Jordan, N. C., Rodrigues, J., Barbieri, C., & Rinne, L. (2018). A Fraction Sense 

Intervention for Sixth Graders With or At Risk for Mathematics Difficulties. Remedial and 

Special Education, 074193251880713. https://doi.org/10.1177/0741932518807139 

Fazio, L. K., DeWolf, M., & Siegler, R. S. (2016). Strategy use and strategy choice in fraction 

magnitude comparison. Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 42(1), 1–16. 

Fuchs, L. S., Schumacher, R. F., Long, J., Namkung, J., Hamlett, C. L., Cirino, P. T., … 

Changas, P. (2013). Improving at-risk learners’ understanding of fractions. Journal of 

Educational Psychology, 105(3), 683–700. https://doi.org/10.1037/a0032446 

Gabriel, F. C., Coché, F., Szucs, D., Carette, V., Rey, B., & Content, A. (2013). A componential 

view of children’s difficulties in learning fractions. Frontiers in Psychology, 4(715), 1–12. 

https://doi.org/10.3389/fpsyg.2013.00715 

Gabriel, F. C., Szucs, D., & Content, A. (2013). The development of the mental representations 

of the magnitude of fractions. PLoS ONE, 8(11), 1–14. 



CROSS-NOTATION KNOWLEDGE 

 

38 

 

https://doi.org/10.1371/journal.pone.0080016 

Ganor-Stern, D. (2013). Are 1/2 and 0.5 represented in the same way? Acta Psychologica, 

142(3), 299–307. https://doi.org/10.1016/j.actpsy.2013.01.003 

Gelman, A., Hwang, J., & Vehtari, A. (2014). Understanding predictive information criteria for 

Bayesian models. Statistics and Computing, 24(6), 997–1016. 

https://doi.org/10.1007/s11222-013-9416-2 

Great Minds. (2015). Eureka Math. Washington, D.C.: Great Minds. Retrieved from 

greatminds.org/math 

Handel, M. J. (2016). What do people do at work? Journal for Labour Market Research, 49(2), 

177–197. https://doi.org/10.1007/s12651-016-0213-1 

Hansen, N., Jordan, N. C., Fernandez, E., Siegler, R. S., Fuchs, L., Gersten, R., & Micklos, D. 

(2015). General and math-specific predictors of sixth-graders’ knowledge of fractions. 

Cognitive Development, 35, 34–49. https://doi.org/10.1016/j.cogdev.2015.02.001 

Hecht, S. A., & Vagi, K. J. (2012). Patterns of strengths and weaknesses in children’s knowledge 

about fractions. Journal of Experimental Child Psychology, 111(2), 212–229. 

https://doi.org/10.1016/j.jecp.2011.08.012 

Hiebert, J., & Wearne, D. (1985). A model of students’ decimal computation procedures. 

Cognition and Instruction, 2(3), 175–205. https://doi.org/10.1080/07370008.1985.9648916 

Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: adaptively setting path lengths 

in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15, 1593–1623. 

Retrieved from http://www.jmlr.org/papers/volume15/hoffman14a/hoffman14a.pdf 

Hurst, M. A., & Cordes, S. (2016). Rational-number comparison across notation: Fractions, 

decimals, and whole numbers. Journal of Experimental Psychology: Human Perception and 



CROSS-NOTATION KNOWLEDGE 

 

39 

 

Performance, 42(2), 281–293. https://doi.org/10.1037/xhp0000140 

Jordan, N. C., Resnick, I., Rodrigues, J., Hansen, N., & Dyson, N. (2017). Delaware 

Longitudinal Study of Fraction Learning: Implications for Helping Children With 

Mathematics Difficulties. Journal of Learning Disabilities, 50(6), 621–630. 

https://doi.org/10.1177/0022219416662033 

Kouba, V. L., Brown, C. A., Carpenter, T. P., Lindquist, M. M., Silver, E. A., & Swafford, J. O. 

(1988). Results of the Fourth NAEP Assessment of Mathematics: Number, Operations, and 

Word Problems. The Arithmetic Teacher, 35(8), 14–19. 

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2016). lmerTest: Tests in Linear 

Mixed Effects Models. 

Lortie-Forgues, H., & Siegler, R. S. (2017). Conceptual knowledge of decimal arithmetic. 

Journal of Educational Psychology, 109(3), 374–386. https://doi.org/10.1037/edu0000148 

Mack, N. K. (1995). Confounding whole-number and fraction concepts when building on 

informal knowledge. Journal for Research in Mathematics Education, 26(5), 422–441. 

https://doi.org/10.2307/749431 

Malone, A. S., Fuchs, L. S., Sterba, S. K., Fuchs, D., & Foreman-Murray, L. (2019). Does an 

integrated focus on fractions and decimals improve at-risk students’ rational number 

magnitude performance? Contemporary Educational Psychology, 59(June), 101782. 

https://doi.org/10.1016/j.cedpsych.2019.101782 

Malone, A. S., Loehr, A. M., & Fuchs, L. S. (2017). The role of domain-general cognitive 

abilities and decimal labels in at-risk fourth-grade students’ decimal magnitude 

understanding. Learning and Individual Differences, 58(May), 90–96. 

https://doi.org/10.1016/j.lindif.2017.05.007 



CROSS-NOTATION KNOWLEDGE 

 

40 

 

Matthews, P. G., Lewis, M. R., & Hubbard, E. M. (2016). Individual differences in nonsymbolic 

ratio processing predict symbolic math performance. Psychological Science, 27(2), 191–

202. https://doi.org/10.1177/0956797615617799 

Mazzocco, M. M. M., & Devlin, K. T. (2008). Parts and “holes”: Gaps in rational number sense 

among children with vs. without mathematical learning disabilities. Developmental Science, 

11(5), 681–691. https://doi.org/10.1111/j.1467-7687.2008.00717.x 

McMullen, J., Laakkonen, E., Hannula-Sormunen, M. M., & Lehtinen, E. (2015). Modeling the 

developmental trajectories of rational number concept(s). Learning and Instruction, 37, 14–

20. https://doi.org/10.1016/j.learninstruc.2013.12.004 

McMullen, J., & Van Hoof, J. (2020). The role of rational number density knowledge in 

mathematical development. Learning and Instruction, 65. 

https://doi.org/10.1016/j.learninstruc.2019.101228 

Meert, G., Grégoire, J., & Noël, M.-P. P. (2010). Comparing the magnitude of two fractions with 

common components: Which representations are used by 10- and 12-year-olds? Journal of 

Experimental Child Psychology, 107(3), 244–259. 

https://doi.org/10.1016/j.jecp.2010.04.008 

Moss, J., & Case, R. (1999). Developing children’s understanding of the rational numbers: A 

new model and an experimental curriculum. Journal for Research in Mathematics 

Education, 30(2), 122. https://doi.org/10.2307/749607 

Newton, K. J., Willard, C., & Teufel, C. (2014). An examination of the ways that students with 

learning disabilities solve fraction computation problems. The Elementary School Journal, 

39(3), 258–275. https://doi.org/10.1163/_afco_asc_2291 

Rau, M. A., & Matthews, P. G. (2017). How to make ‘more’ better? Principles for effective use 



CROSS-NOTATION KNOWLEDGE 

 

41 

 

of multiple representations to enhance students’ learning about fractions. ZDM - 

Mathematics Education, 49(4), 531–544. https://doi.org/10.1007/s11858-017-0846-8 

Ren, K., & Gunderson, E. A. (2019). Malleability of Whole-Number and Fraction Biases in 

Decimal Comparison. Developmental Psychology, 55(11), 2263–2274. 

https://doi.org/10.1037/dev0000797 

Resnick, I., Jordan, N. C., Hansen, N., Rajan, V., Rodrigues, J., Siegler, R. S., & Fuchs, L. S. 

(2016). Developmental growth trajectories in understanding of fraction magnitude from 

fourth through sixth grade. Developmental Psychology, 52(5), 746–757. 

https://doi.org/10.1037/dev0000102 

Resnick, I., Rinne, L., Barbieri, C., & Jordan, N. C. (2019). Children’s reasoning about decimals 

and its relation to fraction learning and mathematics achievement. Journal of Educational 

Psychology, 111(4), 604–618. https://doi.org/10.1037/edu0000309 

Rittle-Johnson, B., & Koedinger, K. R. (2009). Iterating between lessons on concepts and 

procedures can improve mathematics knowledge. The British Journal of Educational 

Psychology, 79(3), 483–500. https://doi.org/10.1348/000709908X398106 

Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual 

understanding and procedural skill in mathematics: An iterative process. Journal of 

Educational Psychology, 93(2), 346–362. https://doi.org/10.1037/0022-0663.93.2.346 

Roell, M., Viarouge, A., Houdé, O., & Borst, G. (2017). Inhibitory control and decimal number 

comparison in school-aged children. PLOS ONE, 12(11), e0188276. 

https://doi.org/10.1371/journal.pone.0188276 

Schneider, M., Merz, S., Stricker, J., de Smedt, B., Torbeyns, J., Verschaffel, L., & Luwel, K. 

(2018). Associations of number line estimation with mathematical competence: A meta-



CROSS-NOTATION KNOWLEDGE 

 

42 

 

analysis. Child Development, 89(5), 1467–1484. https://doi.org/10.1111/cdev.13068 

Siegler, R. S., & Braithwaite, D. W. (2017). Numerical Development. Annual Review of 

Psychology, 68, 187–213. https://doi.org/10.1146/annurev-psych-010416-044101 

Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., … 

Chen, M. (2012). Early predictors of high school mathematics achievement. Psychological 

Science, 23(7), 691–697. https://doi.org/10.1177/0956797612440101 

Siegler, R. S., & Lortie-Forgues, H. (2015). Conceptual knowledge of fraction arithmetic. 

Journal of Educational Psychology, 107(3), 909–918. https://doi.org/10.1037/edu0000025 

Siegler, R. S., & Pyke, A. A. (2013). Developmental and individual differences in understanding 

of fractions. Developmental Psychology, 49(10), 1994–2004. 

https://doi.org/10.1037/a0031200 

Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number 

and fractions development. Cognitive Psychology, 62(4), 273–296. 

https://doi.org/10.1016/j.cogpsych.2011.03.001 

Team R Core. (2018). R: A Language and Environment for Statistical Computing. Vienna, 

Austria, 0. 

Tian, J., Braithwaite, D. W., & Siegler, R. S. (2020a). Distributions of textbook problems predict 

student learning: Data from decimal arithmetic. Journal of Educational Psychology. 

https://doi.org/10.1037/edu0000618 

Tian, J., Braithwaite, D. W., & Siegler, R. S. (2020b). How do people choose among rational 

number notations? Cognitive Psychology, 123. 

https://doi.org/10.1016/j.cogpsych.2020.101333 

Torbeyns, J., Schneider, M., Xin, Z., & Siegler, R. S. (2015). Bridging the gap: Fraction 



CROSS-NOTATION KNOWLEDGE 

 

43 

 

understanding is central to mathematics achievement in students from three different 

continents. Learning and Instruction, 37, 5–13. 

https://doi.org/10.1016/j.learninstruc.2014.03.002 

US Department of Education, Institute of Education Sciences, N. C. for E. S. (2005). National 

Assessment of Educational Progress Mathematics Assessment. Retrieved from 

https://nces.ed.gov 

Vamvakoussi, X., & Vosniadou, S. (2010). How many decimals are there between two fractions? 

Aspects of secondary school students’ understanding of rational numbers and their notation. 

Cognition and Instruction, 28(2), 181–209. Retrieved from 

http://www.tandfonline.com/doi/abs/10.1080/07370001003676603 

Van Hoof, J., Janssen, R., Verschaffel, L., & Van Dooren, W. (2014). Inhibiting natural 

knowledge in fourth graders: towards a comprehensive test instrument. ZDM - Mathematics 

Education, 47(5). https://doi.org/10.1007/s11858-014-0650-7 

Zhang, L., Fang, Q., Gabriel, F. C., & Szűcs, D. (2016). Common magnitude representation of 

fractions and decimals is task dependent. Quarterly Journal of Experimental Psychology, 

69(4), 764–780. https://doi.org/10.1080/17470218.2015.1052525 

 

  



CROSS-NOTATION KNOWLEDGE 

 

44 

 

Tables 

Table 1. Frequentist and Bayesian Analysis Results from Cross-And-Within-Notation Model 

(Study 1, N = 277). 

  Bayesian analysis Frequentist analysis 

Effect B 95% CI t p 

Grade 0.07 [0.03, 0.10] 4.1 <.001 

Arithmetic operation -0.40 [-0.43, -0.36] -22.4 <.001 

Fraction magnitude knowledge 0.01 [-0.08, 0.10] 0.2 .87 

Fraction magnitude knowledge * 

arithmetic operation 

-0.18 [-0.32, -0.05] -2.7 .008 

Decimal magnitude knowledge 0.10 [0.01, 0.19] 2.2 .03 

Decimal magnitude knowledge * 

arithmetic operation 

-0.18 [-0.32, -0.04] -2.5 .01 

Cross-notation magnitude knowledge 0.14 [0.05, 0.23] 3.2 .001 

Cross-notation magnitude knowledge * 

arithmetic operation 

-0.01 [-0.15, 0.12] -0.2 .86 

Note. Here and throughout, B indicates estimated effects, which were identical in the frequentist 

and Bayesian analyses unless stated otherwise; 95% CI indicates 95% credible intervals of 

effects from the Bayesian analyses; and t and p indicate test results from the frequentist analyses. 
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Table 2. Frequentist and Bayesian Analysis Results from Cross-And-Within-Notation Model 

(Study 2, N = 39). 

  Bayesian analysis Frequentist analysis 

Effect B 95% CI t p 

Grade 0.07 [0.01, 0.13] 2.5 .02 

Arithmetic notation 0.18 [0.08, 0.29] 3.8 <.001 

Fraction magnitude knowledge 0.14 [-0.44, 0.71] 0.5 .62 

Fraction magnitude knowledge * 

arithmetic notation 

-0.315 [-1.16, 0.53] -0.8 .41 

Decimal magnitude knowledge 0.01 [-0.91, 0.93] 0.02 .98 

Decimal magnitude knowledge * 

arithmetic notation 

-0.86 [-2.21, 0.51] -1.4 .17 

Cross-notation magnitude knowledge 0.68 [0.004, 1.35] 2.2 .04 

Cross-notation magnitude knowledge * 

arithmetic notation 

-0.70 [-1.70, 0.29] -1.6 .13 

  

 
5 -0.31 denotes the estimated interaction of fraction magnitude knowledge with arithmetic notation in the Bayesian 

analysis; the corresponding estimate from the frequentist analysis was -0.32. 
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Table 3. Frequentist and Bayesian Analysis Results from Cross-And-Within-Notation Model 

(Study 3, N = 394). 

  Bayesian analysis Frequentist analysis 

Effect B 95% CI t p 

Grade 0.03 [-0.01, 0.06] 1.3 .19 

Arithmetic operation -0.24 [-0.26, -0.22] -21.3 <.001 

Arithmetic notation 0.07 [0.04, 0.09] 6.0 <.001 

Arithmetic operation * arithmetic notation -0.37 [-0.41, -0.33] -16.6 <.001 

Fraction magnitude knowledge 0.06 [-0.03, 0.15] 1.2 .21 

Fraction magnitude knowledge * 

arithmetic operation 

-0.07 [-0.18, 0.04] -1.3 .19 

Fraction magnitude knowledge * 

arithmetic notation 

0.00 [-0.10, 0.11] 0.0 .97 

Fraction magnitude knowledge * 

arithmetic operation * arithmetic notation 

0.28 [0.07, 0.50] 2.6 .01 

Decimal magnitude knowledge 0.26 [0.18, 0.35] 6.1 <.001 

Decimal magnitude knowledge * 

arithmetic operation 

-0.15 [-0.25, -0.05] -3.0 .002 

Decimal magnitude knowledge * 

arithmetic notation 

-0.02 [-0.12, 0.08] -0.4 .66 

Decimal magnitude knowledge * 

arithmetic operation * arithmetic notation 

0.08 [-0.12, 0.28] 0.8 .42 

Cross-notation magnitude knowledge 0.20 [0.11, 0.29] 4.5 .001 

Cross-notation magnitude knowledge * 

arithmetic operation 

-0.04 [-0.14, 0.06] -0.7 .47 

Cross-notation magnitude knowledge * 

arithmetic notation 

0.00 [-0.10, 0.10] 0.0 .99 

Cross-notation magnitude knowledge * 

arithmetic operation * arithmetic notation 

0.18 [-0.02, 0.39] 1.8 .08 
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Table 4. Frequentist and Bayesian Analysis Results from Cross-And-Within-Notation Model 

(Combined Data From Studies 1-3). 

  Bayesian analysis Frequentist analysis 

Effect B 95% CI t p 

Grade 0.04 [0.02, 0.06] 3.4 <.001 

Arithmetic operation -0.31 [-0.33, -0.29] -29.6 <.001 

Arithmetic notation 0.07 [0.04, 0.09] 5.8 <.001 

Arithmetic operation * arithmetic notation -0.23 [-0.27, -0.19] -11.1 <.001 

Fraction magnitude knowledge 0.04 [-0.03, 0.11] 1.2 .24 

Fraction magnitude knowledge * 

arithmetic operation 

-0.07 [-0.16, 0.03] -1.3 .18 

Fraction magnitude knowledge * 

arithmetic notation 

0.02 [-0.08, 0.12] 0.3 .74 

Fraction magnitude knowledge * 

arithmetic operation * arithmetic notation 

0.27 [0.08, 0.46] 2.7 .006 

Decimal magnitude knowledge 0.20 [0.13, 0.27] 5.9 <.001 

Decimal magnitude knowledge * 

arithmetic operation 

-0.14 [-0.23, -0.05] -3.1 .002 

Decimal magnitude knowledge * 

arithmetic notation 

0.02 [-0.07, 0.12] 0.5 .63 

Decimal magnitude knowledge * 

arithmetic operation * arithmetic notation 

0.07 [-0.11, 0.25] 0.8 .45 

Cross-notation magnitude knowledge 0.19 [0.12, 0.26] 5.6 <.001 

Cross-notation magnitude knowledge * 

arithmetic operation 

-0.01 [-0.10, 0.08] -0.3 .79 

Cross-notation magnitude knowledge * 

arithmetic notation 

0.00 [-0.10, 0.10] 0.1 .96 

Cross-notation magnitude knowledge * 

arithmetic operation * arithmetic notation 

0.14 [-0.04, 0.33] 1.5 .12 
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Appendix 

Table A1. Descriptive Statistics and Zero-Order Correlations Between Measures (Study 1) 

   Correlations 

 Mean SD Within-

Notation 

Fraction 

Magnitude 

Within-

Notation 

Decimal 

Magnitude 

Cross-

Notation 

Magnitude 

Fraction 

Arithmetic 

Fraction 

Addition and 

Subtraction 

Fraction 

Multiplication 

and Division 

Within-Notation 

Fraction Magnitude 

.55 .37 -      

Within-Notation 

Decimal Magnitude 

.67 .33 .60*** -     

Cross-Notation 

Magnitude 

.55 .38 .67*** .59*** -    

Fraction Arithmetic .43 .23 .41*** .44*** .48*** -   

Fraction Addition and 

Subtraction 

.60 .26 .48*** .50*** .50*** .89*** -  

Fraction Multiplication 

and Division 

.20 .26 .11† .15* .22 .72*** .32*** - 

Note. Mean denotes mean proportion correct. † 0.05 < p < 0.10; * 0.01 < p <0.05, ** 0.001 < p < 0.01, *** p < 0.001 
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Table A2. Descriptive Statistics and Zero-Order Correlations Between Measures (Study 2) 

 Mean SD Correlations 

   Within-

Notation 

Fraction 

Magnitude 

Within-

Notation 

Decimal 

Magnitude 

Cross-

Notation 

Magnitude 

Fraction and 

Decimal 

Addition 

Fraction 

Addition 

Decimal 

Addition 

Within-Notation 

Fraction Magnitude 

.75 .19 -      

Within-Notation 

Decimal Magnitude 

.94 .09 .17 -     

Cross-Notation 

Magnitude 

.78 .18 .72*** .46** -    

Fraction and Decimal 

Addition 

.74 .29 .49*** .24 .58*** -   

Fraction Addition .65 .43 .52*** .33* .62*** .94*** -  

Decimal Addition .84 .22 .27† -.03 .28† .75*** .48** - 

Note. Mean denotes mean proportion correct. † 0.05 < p < 0.10; * 0.01 < p <0.05, ** 0.001 < p < 0.01, *** p < 0.001 
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Table A3. Descriptive Statistics and Zero-Order Correlations Between Measures (Study 3) 

 Mean SD Correlations 

   Within-

Notation 

Fraction 

Magnitude 

Within-

Notation 

Decimal 

Magnitude 

Cross-

Notation 

Magnitude 

Rational 

Number 

Arithmetic 

Fraction 

Addition 

and 

Subtrac-

tion 

Fraction 

Multip-

lication 

and 

Division 

Decimal 

Addition 

and 

Subtrac-

tion 

Decimal 

Multip-

lication 

and 

Division 

Within-Notation 

Fraction Magnitude 

.66 .28         

Within-Notation 

Decimal Magnitude 

.80 .27 .51***        

Cross-Notation 

Magnitude 

.65 .31 .66*** .56***       

Rational Number 

Arithmetic 

.42 .23 .42*** .51*** .50***      

Fraction Addition and 

Subtraction 

.41 .34 .44*** .50*** .50*** .86***     

Fraction Multiplication 

and Division 

.36 .28 .14** .23*** .21*** .66*** .43***    

Decimal Addition and 

Subtraction 

.66 .30 .29*** .40*** .36*** .68*** .45*** .23***   

Decimal Multiplication 

and Division 

.24 .22 .34*** .36*** .40*** .82*** .62*** .50*** .37***  

Note. Mean denotes mean proportion correct. † 0.05 < p < 0.10; * 0.01 < p <0.05, ** 0.001 < p < 0.01, *** p < 0.001 

 


	Abstract
	Introduction
	Children’s Knowledge of Fractions and Decimals
	Cross-Notation Knowledge of Rational Numbers
	Potential Benefits of Cross-Notation Knowledge
	Previous Research on Cross-Notation Knowledge

	The Present Study
	Research Approach and Analyses


	Study 1
	Method
	Participants
	Tasks, Stimuli, and Procedure
	Analysis

	Results and Discussion

	Study 2
	Method
	Participants
	Tasks, Stimuli, and Procedure
	Analysis

	Results and Discussion

	Study 3
	Methods
	Participants
	Tasks, Stimuli, and Procedure
	Analysis

	Results and Discussion

	Combined Analyses
	General Discussion
	The Role of Cross-Notation Knowledge in Learning About Rational Numbers
	The Role of Within-Notation Knowledge in Learning About Rational Numbers
	Relations Between Within- and Cross-Notation Knowledge
	Implications for Instruction in Rational Numbers
	Implications for Math Learning in General
	Limitations
	Conclusion

	References
	Tables
	Appendix

