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Abstract 

Numerical order and magnitude are important aspects of early number knowledge. We 

investigated children’s understanding of relational vocabulary for representing and 

communicating about order (before/after) and magnitude (bigger/smaller, more/less). In 

Experiment 1, 4- to 7-year-old children compared symbolic numbers, non-symbolic discrete 

quantities, and continuous amounts using relational words (N=151). In Experiment 2, 4- to 6-

year-old children made yes/no judgements of ordinal and magnitude relations between symbolic 

numbers (N=60). Children showed lower performance with ordinal vocabulary compared to 

magnitude vocabulary (Experiment 1). Further, children were less likely to endorse the use of 

ordinal language for non-consecutive numbers than consecutive numbers, but showed no 

difference for magnitude language (e.g., 6 and 7 are bigger than 5, but only 6 comes after 5; 

Experiment 2). These results suggest a divergence in children’s understanding of magnitude and 

ordinal vocabulary, suggesting a dissociation between these two concepts and/or the language 

used to communicate about them.  

Keywords: relational language, mathematical language, math vocabulary, numerical order, 

numerical magnitude 
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Highlights 

• Children show lower understanding of vocabulary for numerical order than magnitude  

• Children do not systematically apply ordinal vocabulary to continuous areas  

• Children apply ordinal language narrowly to refer to consecutive numbers 
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Introduction 

 Children’s early number learning is multifaceted. Children must learn the meaning of 

numbers in terms of the quantity those numbers represent (i.e., cardinality; 3 = | | |) as well as 

their relative magnitudes (e.g., 4 > 3) and conventional order (e.g., 3, 4, 5). Furthermore, 

individual differences in children’s ability to compare numerical magnitudes (i.e., “which 

number is bigger?”) and judge numerical order (i.e., “are these three numbers in order?”) are 

uniquely predictive of children’s later math ability (Holloway & Ansari, 2009; Lyons et al., 

2014; Lyons & Beilock, 2011; Starr et al., 2013). Given the importance of understanding these 

numerical relations, decades of research have investigated cardinal and magnitude 

representations of symbolic number, as well as how magnitude information is used to construct 

numerical order (e.g., Anderson & Cordes, 2013; Brannon, 2002; Dehaene, 2007; Moyer & 

Landauer, 1973; Wynn, 1992). However, less research has focused on how children’s ordinal 

knowledge may be distinct from other numerical concepts, such as magnitude (Lyons & Beilock, 

2013; Turconi et al., 2006; Tzelgov & Ganor-Stern, 2005). In the current set of studies, we 

investigate how young children compare quantities and amounts in terms of their magnitude and 

in terms of their ordinal position using specific vocabulary that describes each of these relations 

(e.g., bigger, more, after). In general, substantial work highlights the importance of math 

language and vocabulary for math learning (Hornburg et al., 2018; Powell & Nelson, 2017; 

Purpura et al., 2017; Purpura & Reid, 2016). Here, we focus on children’s understanding of 

specific mathematical vocabulary that references different relational information (e.g., bigger 

references relative magnitude, after references relative order) to better understand how children 

map the meaning of these vocabulary words to quantity relations.  

Ordinal Understanding 
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Quantities, such as sets of items, can be ordered in terms of their exact cardinal values, 

which inherently contain magnitude information. Symbolic numbers can similarly convey 

ordinal information in a way that maps onto precise magnitudes. However, symbolic numbers 

can also be used to convey ordinal information in a way that is divorced from the precise 

magnitudes they represent. For example, house numbers typically provide ordinal information 

without magnitude information; if a street includes the addresses of 1200, 1210, and 1220, they 

are likely to occur that order, but the numerical magnitudes are not meaningful in that the 

numerical differences of the addresses are unlikely to map onto the distances between the houses 

or the number of houses in between. In this ordinal sense, numbers are much like letters of the 

alphabet – M comes after H, but there are no magnitudes attached to M or H.  

 Children are able to recite the count list well before they have an understanding of the 

quantities representing those values (Huang et al., 2010; Sarnecka & Carey, 2008; Wynn, 1992) 

and part of this procedural knowledge is learning the “stable-order” principle, that the words 

must be recited in the same order (Gelman & Gallistel, 1978; Ip et al., 2018). This rote counting 

procedure may then provide children with an early, albeit impoverished, sense of the ordinal 

relations among symbolic numbers before those numbers are mapped to magnitudes. Indeed, it 

takes quite a while for children to connect the ordinal relations of number words to the 

magnitude relations of the underlying quantities they represent. For example, many children 

know the cardinal principle (i.e., that when counting, the last number word recited denotes the 

size of the set) but continue to struggle with knowing “ten” is more than “six” (i.e., the later-

greater principle; Davidson et al., 2012; Le Corre, 2014) or that adding one item to a set results 

in the next number word in the count list (i.e., the successor function; Cheung et al., 2017; 

Sarnecka & Carey, 2008; Schneider et al., 2020). Furthermore, children’s ability to place 
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quantities in an exact numerical order may be dependent on these other aspects of their number 

knowledge, such as the cardinal principle, the later-greater principle, and the successor function 

(Spaepen et al., 2018).  

However, much of the research investigating ordinal knowledge has focused on 

children’s knowledge of greater-than and less-than relations by measuring ordinal judgements of 

non-symbolic arrays (e.g., Brannon & Van de Walle, 2001; Bullock & Gelman, 1977; Cantlon et 

al., 2007; Cantlon & Brannon, 2006). Although these greater-than and less-than magnitude 

relations are deeply entangled with ordinal relations, whether children flexibly integrate their 

magnitude and ordinal knowledge into a single concept that is accessible for thinking about 

relative magnitude and conventionalized order separate from magnitude is an open question. 

This is important given that children’s ability to decide which of two numbers is larger and 

whether or not three numbers are “in order” show separable and significant relations with 

advanced math ability (Lyons et al., 2014; Lyons & Beilock, 2011). 

Connecting Magnitude and Order 

 Non-symbolic number is easily orderable in terms of relative magnitude and cardinality 

(e.g., from largest to smallest, with one-unit increments) and these constructs are likely deeply 

connected in the way people think about numerical information. Researchers have proposed that 

an ordered and approximate mental number line is an appropriate analogy for how numerical 

magnitudes are represented (Dehaene, 2011; Dehaene et al., 1998). Moreover, the spatial 

arrangement of numerical information impacts people’s ability to make magnitude judgements. 

For example, judging which of two numbers is larger is easier when the numbers are in 

ascending order than descending order (Turconi et al., 2006) and responding to larger numbers is 

easier with the right hand than the left hand (termed the SNARC effect; Dehaene et al., 1993; 
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Gevers et al., 2006). Lastly, the connection between magnitude and order is evident early in 

infancy and in non-human primates (e.g., Brannon, 2002; Brannon & Terrace, 1998; Cantlon & 

Brannon, 2006; Picozzi et al., 2010; Suanda et al., 2008). For example, infants generalize 

numerical order from monotonically increasing discrete sets to monotonically increasing line 

lengths (de Hevia & Spelke, 2010) and children and non-human primates are better able to learn 

the order of stimuli that monotonically change in size (e.g., circles from smallest to largest) than 

when the same stimuli are ordered arbitrarily and nonmonotonically (e.g., Ohshiba, 1997; 

Terrace & McGonigle, 1994). Together, these findings suggest that numerical order as defined in 

terms of relative magnitude (e.g., Russell, 1903) may be an ontogenetically and phylogenetically 

early concept (see Anderson & Cordes, 2013 for a review). 

However, ordinal and magnitude relations do show distinct patterns in the case of symbolic 

number. When making magnitude judgements about symbolic number, people demonstrate a 

robust distance or ratio effect, such that it is easier to compare two numbers that are further apart 

than two numbers that are closer together (e.g., Buckley & Gillman, 1974; Moyer & Landauer, 

1973). In contrast, ordinal judgements about symbolic number show a reverse distance effect, 

such that values closer together (e.g., 4, 5, 6) are easier to judge than values further apart (e.g., 3, 

5, 7; Lyons & Ansari, 2015; Turconi et al., 2006). Moreover, the relations between symbolic 

magnitude and ordinal knowledge to arithmetic skills change over the 1st to 6th grade time period: 

magnitude judgements start out as a stronger predictor, but by 6th grade ordinal knowledge is a 

stronger predictor of arithmetic success than magnitude knowledge (Lyons et al., 2014). 

Therefore, it may be that children’s understanding of magnitude and order are dissociable when 

reasoning about symbolic numbers, which, as discussed earlier, represent cardinal magnitudes, 
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but can also be used for ordinal representations in the absence of magnitude through the 

conventionalization of the count list.  

Accessing Numerical Relations Through Math Language 

 Mathematical vocabulary is a critical component of early developing numeracy skills 

(e.g., Hornburg et al., 2018; Purpura et al., 2017; Purpura & Reid, 2016), and mathematical 

comparatives are one specific type of mathematical vocabulary (e.g., more, bigger). Although 

researchers have investigated the development of children’s knowledge of specific comparatives, 

such as more (Gathercole, 1985; Odic et al., 2013; Palermo, 1973), bigger (e.g., Marschark, 

1977), and the temporal comparatives before/after (e.g., Amidon & Carey, 1972; Clark, 1971; 

Johnson, 1975), whether children flexibly interpret these different vocabulary words as targeting 

the same underlying numerical concepts in the same way is an open question. Given the 

importance of relational language for children’s relational reasoning in non-numerical domains 

(e.g., Christie & Gentner, 2014), understanding whether children understand mathematical 

vocabulary for different numerical relations in similar or different ways is a promising approach 

for better understanding children’s developing numerical knowledge.  

 Prior work suggests that children have at least some understanding of these relational 

comparatives in unambiguous contexts by around 4 years old. For example, 3-year-olds perform 

above chance identifying more in both discrete and continuous contexts (Odic et al., 2013), 4-

year-olds can act out sentences with the correct order of events described using before and after 

(although some children still make systematic errors; Clark, 1971), and 3- and 4-year-olds can 

readily point to the biggest and littlest in a display (although, still struggle with next littlest; 

Marschark, 1977). Thus, in the current study, we focused our age group on children who are 

likely to be at least somewhat familiar with the target relational vocabulary (i.e., 4-year-olds and 
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older), but are continuing to develop more advanced numerical concepts, such as the “later-

greater” principle and knowledge of the successor function (e.g., Davidson et al., 2012; Le Corre, 

2014; Schneider et al., 2020), which might impact their ability to attend to ordinal or magnitude 

relations or their understanding of how these vocabulary words apply to ordinal and magnitude 

relations. This approach allows us to investigate children’s understanding of comparative 

vocabulary for targeted numerical relations in terms of their specific (and potentially systematic) 

interpretation errors, rather than general differences in children’s knowledge of these words.  

Furthermore, it is worth noting that children’s early knowledge of words like more and 

bigger (as just described) is in reference to size, amount, and number. In contrast, children’s 

early knowledge of the words before and after may be specific to the context of temporal order 

(e.g., Sam eats breakfast before going to school). Thus, children may not directly learn ordinal 

words for quantities, but instead apply already known temporal words in the new and different 

context of quantitative order. What components of children’s early number knowledge allow 

them to make this mapping between vocabulary for temporal order and numerical order? One 

possibility is children’s early learning of the count list. Although the count list is initially learned 

in a rote, but stable, order (e.g., Huang et al., 2010; Sarnecka & Carey, 2008; Wynn, 1992), other 

work suggests that it is understanding the structure of counting that is necessary (although, not 

always sufficient) for a range of early number concepts (e.g., Cheung et al., 2017; Davidson et 

al., 2012; Schneider et al., 2019; Schneider et al., 2020). In either case, children’s experience 

with counting may be important for their ability to think about symbolic number in terms of 

order using temporal vocabulary (e.g., when counting, larger numbers are said after smaller 

numbers).  

The Current Study  
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 In the current study, we investigated children’s ability to compare two quantities or 

amounts when prompted to do so with quantitative terms that refer to magnitude (i.e., bigger, 

smaller, more, less) or order (i.e., before, after). Our primary question is whether children map 

both magnitude and ordinal vocabulary onto the same underlying conceptualization of relative 

quantity (e.g., a “later is greater” concept that directly aligns relative magnitude and relative 

order), or whether their receptive knowledge of magnitude and ordinal vocabulary show 

dissociations. We address this primary question in two experiments. In Experiment 1, we 

systematically compare children’s ability to compare quantities across (a) relational vocabulary 

that refer to either magnitude or ordinal relations and (b) different quantity types that vary in the 

type of ordinal information available. In Experiment 2, we narrow our focus to test a specific 

hypothesis about where children’s understanding of magnitude and ordinal vocabulary might 

diverge: when judging the relations between consecutive and non-consecutive symbolic 

numbers, ordinal vocabulary might be less readily applied to values that are not consecutive, 

compared to magnitude vocabulary (e.g., Turconi et al., 2006).  

If children’s ordinal understanding of quantities is inherent in their understanding of the 

magnitude of quantities, and they can flexibly and readily access this understanding regardless of 

whether they are prompted to compare values using magnitude or ordinal relational vocabulary, 

then we would not expect children’s behavior to systematically differ across either distinct 

relational vocabulary or quantity types. If, on the other hand, children show differences in their 

knowledge of ordinal and magnitude vocabulary across different quantities, their response 

patterns may reveal different magnitude and ordinal concepts and/or differences in how they map 

these terms (bigger/smaller, before/after) onto a unified magnitude/ordinal concept. 
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Finally, in Experiment 2, we also explore the role of counting knowledge in children’s 

understanding of ordinal vocabulary for symbolic numbers. Given children’s early learning of a 

rote and stable count list, followed by increasing understanding of how counting relates to 

magnitude and the structure of the count list (e.g., Davidson et al., 2012; Sarnecka & Carey, 

2008), we included various measures of counting ability (e.g., what comes next, counting by 2s) 

to begin generating hypotheses about how children’s ability to flexibly think about the order of 

number words in the count list might be related to their ability to map ordinal words to numerical 

order.  

Experiment 1 

In Experiment 1, we asked children to compare two symbolic numbers, two discrete 

quantities, or two continuous amounts based on the terms bigger/smaller, more/less, or 

after/before. Although all three quantity types convey magnitude information, they differ in the 

kind of ordinal information available. The “later-greater” principle of symbolic number provides 

a conventionalized order in addition to magnitude, such that numbers representing larger values 

come later in the count list. In contrast, the “later-greater” principle does not apply to continuous 

area-based magnitudes, as they do not have a discrete or conventionalized order (i.e., there are 

not immediate successors and magnitude-based monotonic order could be increasing or 

decreasing). In other words, although continuous area-based magnitudes are orderable by 

magnitude, and prior work suggests that even infants and non-human primates can reason about 

the magnitude-based order of continuous magnitudes (de Hevia & Spelke, 2010; Ohshiba, 1997; 

Terrace & McGonigle, 1994), this order is entirely based on relative magnitude and is not 

conventionalized. Lastly, discrete sets are similarly orderable by non-symbolic magnitude, again 

a feature that even infants attend to (de Hevia & Spelke, 2010). However, unlike continuous 
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area, discrete sets can be enumerated and their cardinalities can be represented by symbolic 

numbers, making it possible that children will apply the conventionalized “later-greater” 

ordering of symbolic numbers to non-symbolic discrete sets. Thus, in Experiment 1 we ask two 

specific questions: (1) Within a particular quantitative context (e.g., numbers, dots, area) how do 

children’s relational judgements vary across different relational vocabulary? and (2) How does 

children’s understanding of specific relational vocabulary vary across different quantitative 

contexts? By examining these questions, we can begin to investigate whether children apply both 

ordinal and magnitude vocabulary similarly and flexibly or whether there are either general 

differences in the level of understanding and/or systematic differences in how these vocabulary 

words are applied (specific predictions are detailed in Analysis Plan and Predictions).  

This experiment was pre-registered on AsPredicted.org ( #18471; 

https://aspredicted.org/cy742.pdf) and the pre-registration, materials, data, and data-analysis 

code are available on the Open Science Framework (https://osf.io/e9y76/). 

Method 

Participants 

One-hundred-and-fifty-one1 4 through 7-year-old children are included in the final 

sample. Children (ages reported as years;months) were randomly assigned to one of three 

conditions: Symbolic Number (n = 52; Mage = 5;9; Range: 4;0 to 7;10; 28 girls, 24 boys), 

Discrete Sets (n = 49; Mage = 5;8; Range: 4;1 to 7;10; 28 girls, 20 boys, 1 undisclosed), and 

Continuous Area (n = 50; Mage = 5;8; Range: 4;0 to 7;9; 25 girls, 25 boys). This sample size was 

 
1 We pre-registered a final sample of 150, with 50 children in each condition. Due to the dynamic nature of data 

collection at museums and other programs, as well as an experimenter error in condition assignment, we ended data 

collection with one additional child overall and a slight imbalance across conditions.  
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chosen a priori to provide 80% power (calculated using G*Power; Faul et al., 2007) to detect 

effect sizes as small as 0.4 for paired t-tests and 0.56 for independent t-tests.  

 Children were recruited through the greater Chicago, IL area and participated in our 

campus laboratory, at a local science museum, or at local schools and childcare programs from 

January 2019 to November 2019. Parents provided written consent and children provided verbal 

assent. All children received a small prize (e.g., sticker or small toy). Parents of children coming 

into the lab received $10 for travel compensation and schools or childcare programs received a 

$50 gift card for supplies. Additional demographic data were not systematically collected, 

limiting our ability to contextualize these findings. However, these data were collected for the 

experiment reported in Supplemental Materials, and we expect similar demographic 

characteristics across the two samples because we used similar recruitment methods. All 

procedures were approved by the University of Chicago Institutional Review Board (IRB17-

1599 “Relational Math Reasoning”).  

Design 

Children were presented two quantities and questions about those quantities in a forced-

choice task. All children received three types of questions: Order (“which comes after 

[before]?”), Size-Based Magnitude (“which is bigger [smaller]?”), and Quantity-Based 

Magnitude (“which is more [less]?”). In a between-subject design, children were randomly 

assigned to one of three conditions that varied the stimuli being compared: written numerals 

paired with number words (Symbolic Number Condition), sets of small squares that varied in the 

number of items (Discrete Set Condition), or two single squares that varied in area (Continuous 

Area Condition).  

Stimuli 
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All conditions included the same 36 trials and only differed in the stimulus presented to 

represent the quantity (see Figure 1). In the Symbolic Numeral condition, the two options were 

Arabic numerals centered on the left and right half of the screen and were paired with English 

number words spoken aloud by the experimenter. In the Discrete Sets condition, the two options 

were sets of small red squares placed randomly within a larger rectangle (13 cm wide by 10 cm 

tall, presented as a border for all trial types). We did not vary the item size of the Discrete Sets 

(each item was 1.7 cm square, resulting in an area of 2.89 cm2), meaning that cumulative area 

co-varied with number. In the Continuous Area condition, the two options were each a single red 

square that had the same area as the cumulative area of the corresponding Discrete Sets trial 

(e.g., the stimulus corresponding to 9 items had an area of 9 x (2.89 cm2)).  

 

The 36 trials were made up of 6 unique comparisons (2 vs. 5; 3 vs. 6; 3 vs. 8; 4 vs. 7; 4 

vs. 8; 5 vs. 9) shown twice for each of the three quantitative questions (which comes after 

[before], which is bigger [smaller], which is more [less]), once for each positive direction (after, 

Figure 1: Example stimuli from Experiment 1. In the Symbolic Number Condition (Panel A), the 

experimenter pointed to each stimulus while saying the number word (e.g., nine and five). In the Discrete 

Set Condition (Panel B) and the Continuous Area Condition (Panel C), the experimenter pointed to each 

stimulus referring to it as “this”. In all conditions, children were asked the same set of questions (Panel 

D) that probed both ordinal and magnitude relations.  
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bigger, more) and once for each negative direction (before, smaller, less). To ensure that 

variability in performance could be attributed to interpreting the vocabulary word rather than 

difficulties discriminating the magnitudes, stimuli on each trial differed by at least a 1:2 ratio, 

which even infants can discriminate (see Cordes & Brannon, 2008 for a review). 

Procedure 

Trained research assistants administered the task using a 13-inch laptop computer 

running PsycoPy2 Version 1.85.4 and the task typically lasted no more than 10 minutes. On each 

trial, the screen displayed two visual stimuli corresponding to the condition and a question 

written in English along the top of the screen. The experimenter read the question aloud, then 

pointed to the left and right options while saying “this or this” (Continuous Area and Discrete 

Sets conditions) or the number words (e.g., “two or three”; Symbolic Number condition). 

Children responded by pointing to the left or right option and/or saying the number word aloud 

(Symbolic Number condition only). The experimenter recorded the child’s response with the left 

or right arrow key, which also immediately advanced to the next trial. The correct answer was on 

the right side for half of the trials of each question (i.e., if children had a side bias, they would be 

at 50%). 

Analysis Plan and Predictions 

The dependent variable is children’s proportion correct on each trial type, where 

correctness was defined as selecting the larger magnitude when asked about bigger, more, or 

after, and the smaller magnitude when asked about smaller, less, or before2. We had two central 

 
2 Given the spatial layout of the task, children might have interpreted the ordinal questions in terms of spatial 
order, with the left side = “before” and the right = “after”. When the ordinal trials are scored in this way, 
average performance is around 50% on all three quantity types, suggesting there was not a group level 
tendency to use this interpretation. However, some children may have interpreted it this way: 8 children in 
the Continuous Area condition and 2 children in the Discrete Sets condition responded in this way on all 
ordinal trials. Given that our interest was specifically in whether children would interpret these ordinal 
vocabulary words in terms of relative magnitude (i.e., after = bigger/more; before = smaller/less) and that 
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questions. Our analysis plan and primary hypotheses were pre-registered and deviations from the 

pre-registration are clearly described. 

First, within a particular quantitative context (e.g., numbers, dots, area) how do children’s 

relational judgements vary across different relational vocabulary? To address this question, we 

pre-registered performing paired t-tests within each quantity stimulus type (discrete sets, 

continuous area, symbolic number), comparing performance on the ordinal questions 

(before/after), the size-based magnitude questions (bigger/smaller), and the quantity-based 

magnitude questions (more/less). Although not preregistered (due to an oversight in the 

preregistration), we also report children’s performance within each cell to chance, to better 

interpret the pattern of differences. We predicted that children would perform better on 

magnitude questions than ordinal questions when asked about continuous areas, as prior work 

suggests children of this age are able to reason about relative magnitude of amounts using 

magnitude vocabulary (e.g., Marschark, 1977; Odic et al., 2013), but continuous amounts do not 

have a conventionalized order (i.e., they do not have immediate successors and could readily be 

ordered by increasing or decreasing size). However, for symbolic numbers and discrete sets, 

which can be readily mapped to magnitude and have a conventional order via the count list, we 

did not make a directional prediction, but instead were interested in investigating which kind of 

relation children more readily map to these quantities. Lastly, for all quantity types, we were 

interested in whether children’s performance would differ across the two terms for magnitude, 

more/less and bigger/smaller. 

 
there was not a group-level tendency to interpret ordinal words spatially, we continued to score and 
interpret children’s ordinal knowledge in terms of a magnitude-based interpretation, as originally planned. 
However, when excluding these children from the analyses, the pattern remains unchanged.  
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Second, how does children’s understanding of specific relational vocabulary vary across 

different quantitative contexts? To address this question, we pre-registered performing 

independent t-tests across each of the three quantity type conditions, within each of the question 

types, which used different relational vocabulary. When asked about order (before/after), we 

predicted that children would perform better with Symbolic Numbers than Continuous Area, 

with performance on Discrete Sets being intermediate, because symbolic numbers are most 

closely tied to a conventional order whereas continuous areas do not typically have a 

conventional order. Further, if children readily map discrete sets (i.e., non-symbolic numerical 

values) to numerical order then we would expect children to be able to readily make ordinal 

judgements with these stimuli using ordinal vocabulary, similar to their ability to do so for 

symbolic number. On the other hand, if children’s conception of order is specifically tied to 

symbolic number, and not (at this age) readily generalized to non-symbolic number (potentially 

akin to differences in knowing numerical successors for symbolic count list versus discrete sets; 

Davidson et al., 2012), then we would expect children to show relatively worse performance on 

ordinal words that refer to discrete sets, closer to what we predict for judgements of continuous 

area. We did not have specific directional predictions about how children’s performance might 

vary across contexts when asked about relative magnitude because all three quantity types 

convey magnitude.  

As a secondary exploratory question, we were also interested in variations in children’s 

performance across the age range in our sample. This age range was chosen such that children 

should have basic knowledge of the relational vocabulary tested and basic number knowledge 

(e.g., counting, the cardinal principle; Sarnecka & Carey, 2008), but are still developing more 

advanced numerical concepts (e.g., successor function; Davidson et al., 2012; Schneider et al., 



Relational Language for Numerical Comparisons 

 18 

2020). This developing knowledge might impact how children interpret magnitude and ordinal 

vocabulary across different quantity contexts. To explore this hypothesis, we investigated 

children’s ordinal judgements across the three quantitative contexts as a function of age, using 

correlations with age in months to investigate general trends (with n = 50, we have 80% power to 

detect correlations as small as .37) and using comparisons to chance (50%) with younger (4 and 

5 years old) and older children (6 and 7 years old) separately to contextualize these trends (with 

n = 17-32 in each group, we have 80% power to detect medium to large effects of .51 to .72). 

Importantly, these analyses are exploratory (i.e., although we did plan on exploring age a priori, 

we did not pre-register a specific analysis plan or hypotheses) and because we are only powered 

to detect medium to large age effects, they are intended to support hypothesis generation about 

the potential developmental time course of children’s knowledge. 

 All analyses were conducted in R 4.0.2 (R Core Team, 2020) with RStudio (R Studio 

Team, 2016), and the following packages stringr_1.4. (Wickham, 2019), forcats_0.5.0 

(Wickham, 2020), effsize_0.8.0 (Torchiano, 2018), gt_0.2.2 (Iannone et al., 2020), 

psychReport_1.1.0 (Mackenzie, 2018), rstatix_0.6.0 (Kassambara, 2020), purrr_0.3.4 (Henry & 

Wickham, 2019), readxl_1.3.1 (Wickham & Bryan, 2019), ggplot2_3.3.2 (Wickham, 2016), 

tidyr_1.1.1 (Wickham & Henry, 2018), dplyr_1.0.1 (Wickham, Francois, et al., 2018), 

readr_1.3.1 (Wickham, Hester, et al., 2018), and cocor_1.1.3 (Diedenhofen & Musch, 2015). 

Results and Discussion 

 Based on our pre-registered plan, our primary analyses do not separate the different 

directions of the relation (i.e., bigger vs. smaller), but the descriptive data for each word and 

collapsed across each pair of words are reported in Table 1.  
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Table 1: Mean Proportion Correct (Standard Deviation) of Performance in Each Visual 

Condition for Each Relational Word 

 Magnitude – Size Magnitude – Quantity Order 

 bigger smaller both more less both after before both 

Symbolic 

Number 

0.92 

(0.17) 

0.91 

(0.17) 

0.92 

(0.14) 

0.91 

(0.16) 

0.82 

(0.30) 

0.87 

(0.20) 

0.71 

(0.34) 

0.79 

(0.26) 

0.75 

(0.26) 

Discrete Sets 
0.94 

(0.16) 

0.93 

(0.14) 

0.93 

(0.14) 

0.94 

(0.14) 

0.86 

(0.25) 

0.90 

(0.16) 

0.64 

(0.33) 

0.67 

(0.31) 

0.65 

(0.26) 

Continuous 

Area 

0.97 

(0.07) 

0.93 

(0.14) 

0.95 

(0.08) 

0.86 

(0.23) 

0.89 

(0.16) 

0.87 

(0.17) 

0.54 

(0.33) 

0.54 

(0.32) 

0.54 

(0.27) 

 

Within a particular quantitative context, how do children’s relational judgements vary across 

different relational terms?   

First, we investigated how children’s performance varied for different kinds of relational 

language on the different quantity types (see Figure 2, comparing across relational vocabulary 

within each condition, shown on the x-axis). Within each family of tests, we control for family 

wise error rates using Holm’s sequential procedure to adjust the alpha level (Holm, 1979). Thus, 

an alpha level is reported separately for each test comparing across the relational language 

categories.  
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 Continuous Area. When making judgements about squares of different sizes, children 

scored highest when asked which was bigger/smaller (Size Magnitude), followed by more/less 

(Quantity Magnitude), and then before/after (Order), with all pairwise comparisons revealing 

significant differences: Size Magnitude vs. Order, t(49) = 10.2, p < 0.001, d = 2.1 (1/3 = 0.017); 

Quantity Magnitude vs. Order, t(49) = 8.0, p < 0.001, d = 1.46 (2/3 = 0.025); Size Magnitude vs. 

Quantity Magnitude, t(49) = 3.6, p < 0.001, d = 0.55 (3/3 = 0.05). Furthermore, children scored 

significantly above chance (.50) when asked about Size Magnitude, t(49) = 41.3, p < 0.001, and 

Quantity Magnitude, t(49) = 15.6, p < 0.001, but not when asked about Order, t(49) = 0.99, p = 

0.33. 

Figure 2: Proportion correct in Experiment 1 within each stimulus type (x-axis) when judging 

Size Based Magnitude (bigger and smaller; darkest grey, left), Quantity Based Magnitude (more 
and less; light gray, middle), and Order (after and before; white gray, right). Means and standard 

errors are plotted with the violin plots of the underlying distribution of child-level data.  
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Discrete Sets. When making judgements about sets, children scored highest when asked 

which was bigger/smaller or more/less (Size and Quantity Magnitude, respectively), which were 

not significantly different from each other, Size Magnitude vs. Quantity Magnitude, t(48) = 1.75, 

p = 0.09, d = 0.2 (3/3 = 0.05). Children scored lowest when asked which comes before/after 

(Order), which was significantly different from both bigger/smaller, Size Magnitude vs. Order, 

t(48) = 7.8, p < 0.001, d = 1.3 (1/3 = 0.017), and more/less, Quantity Magnitude vs. Order, t(48) 

= 6.7, p < 0.001, d = 1.1 (2/3 = 0.025). Unlike the Continuous Area condition, children scored 

above chance (.50) on all three relations: Size Magnitude, t(48) = 21.2, p < 0.001, Quantity 

Magnitude, t(48) = 17.0, p < 0.001, and Order, t(48) = 4.1, p < 0.001. 

Symbolic Number. When making judgements about symbolic numbers, children scored 

highest when asked which was bigger/smaller (Size Magnitude), followed by more/less 

(Quantity Magnitude), and then before/after (Order), with all pairwise comparisons showing 

significant differences: Size Magnitude vs. Order, t(51) = 4.8, p < 0.001, d = 0.73 (1/3 = 0.017); 

Quantity Magnitude vs. Order, t(51) = 3.5, p = 0.001, d = 0.49 (2/3 = 0.025); Size Magnitude vs. 

Quantity Magnitude, t(51) = 2.5, p = 0.02, d = 0.25 (3/3 = 0.05). As in the Discrete Sets 

condition, children scored significantly above chance on all three relations: Size Magnitude, 

t(51) = 21.5, p < 0.001, Quantity Magnitude, t(51) = 13.4, p < 0.001, and Order, t(51) = 7.0, p < 

0.001. 

How does children’s understanding of specific relational terms vary across different 

quantitative contexts? 

Next, we investigated how performance varied on each of the relational vocabulary types 

(e.g., bigger/smaller) across the three quantity types (area, discrete sets, and symbolic number; 

see Figure 2; comparing across conditions on the x-axis for each type of relational vocabulary). 
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When a test of equality of variances was significant, a Welch’s t-test is reported (not assuming 

equal variances), however, the interpretation does not change when variances are assumed to be 

equal. As in the previous analyses, Holm’s sequential procedure (Holm, 1979) was used to 

control family wise error rates within each family of tests comparing across condition within a 

relational language type.  

 Size Based Magnitude. Children’s scores did not significantly differ across the three 

quantity conditions when asked which was bigger/smaller: Continuous Area vs. Symbolic 

Number, t(80.3) = 1.65, p = 0.10, d = 0.32 (1/3 = 0.017); Continuous Area vs. Discrete Sets, 

t(73.4) = 0.8, p = 0.44, d = 0.16 (2/3 = NA, because test 1/3 was not significant); Discrete Sets 

vs. Symbolic Number, t(99) = 0.66, p = 0.51, d = 0.13 (3/3 = NA).  

 Quantity Based Magnitude. As shown for size-based magnitude, children’s scores did 

not significantly differ across the three quantity conditions when asked to decide which was 

more/less: Discrete Sets vs. Symbolic Number, t(99) = 0.85, p = 0.40, d = 0.17 (1/3 = 0.017); 

Continuous Area vs. Discrete Sets, t(97) = 0.78, p = 0.44, d = 0.16 (2/3 = NA); Continuous Area 

vs. Symbolic Number, t(100) = 0.13, p = 0.90, d = 0.03 (3/3 = NA).  

 Order.  Unlike the two magnitude-based relations, children’s judgments of the ordinal 

relations before/after varied across the three conditions. Children scored higher when comparing 

symbolic numerals than when comparing continuous areas, t(100) = 4.1, p < 0.001, d = 0.80, 1/3 

= 0.017. Judgements about discrete sets were intermediate, but not statistically different (when 

correcting for multiple comparisons) from either continuous area, t(97) = 2.13, p = 0.04, d = 0.43 

(2/3 = 0.025), or symbolic number, t(99) = 1.9, p = 0.06, d = 0.38 (3/3 = NA).  

How does children’s age relate to their understanding of ordinal language?  



Relational Language for Numerical Comparisons 

 23 

 The largest differences between quantitative contexts were in children’s judgements of 

order. When comparing symbolic numbers, children scored well above chance when judging 

magnitude and order, suggesting they understand both categories of relational terms in this 

context. However, the fact that children were not able to systematically judge the relative order 

of continuous areas suggests that children do not readily map the conventionalized numerical 

order of symbolic numbers (i.e., determined by the count list) to magnitude in a way that 

generalizes to continuous areas. Moreover, children’s performance comparing discrete sets with 

order vocabulary was in between these other two conditions – suggesting that they may be 

beginning to map discrete magnitudes onto the conventionalized order of number symbols, but 

that their understanding of order vocabulary for these sets is less robust than for symbolic 

number.  

Children’s performance mapping order terms onto the order of both discrete sets, n = 49, 

r = .56, p < .001, and symbolic numbers, n = 52, r = .31, p = .024, showed a significant 

correlation with age, with children’s performance improving across the age range (see Figure 3). 

However, children’s performance with continuous area was not significantly correlated with age, 

n = 50, r = .10, p = .473. Moreover, younger children (4- and 5-year-olds) were only above 

chance in the symbolic number condition, n = 31, M  = 0.72, p < .001, but not in the discrete sets 

condition, n = 32, M  = 0.57, p = .115, or in the continuous area condition, n = 32, M  = 0.52, p = 

.642). On the other hand, older children (6- and 7-year-olds) scored above chance with both 

symbolic numbers, n = 21, M = 0.81, p < .001, and discrete sets, n = 17, M = 0.81, p < .001, but 

were again around chance with continuous area, n = 18, M = 0.57, p = .360.  
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Summary of Experiment 1 

In Experiment 1, we have two primary findings: children were better able to judge 

magnitude relations than ordinal relations across all three quantity contexts and only judgements 

of ordinality varied for different quantitative contexts. Specifically, children did not 

systematically apply the ordinal words before and after to amounts of continuous area. In 

contrast, children were able to systematically judge the relative order of symbolic numbers using 

ordinal vocabulary. Finally, children’s ability to use ordinal words to judge the relative order of 

discrete sets was between these other two quantity contexts.  

In addition, although overall children scored significantly above chance on their use of 

ordinal vocabulary, our exploratory age analyses suggest that children’s understanding of ordinal 

Figure 3: Scatterplot displaying the relation between proportion correct (x-axis) on the ordinal 

vocabulary words (before and after) and age in months (y-axis) separated by quantitative 

contexts (by color). Fit lines are based on linear models with standard error. 
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vocabulary for discrete sets may emerge sometime between 4- and 7-year-old. Although 

speculative (given the narrow age range tested and limitations with sample size), we discuss 

some important open questions generated by this age-related pattern of performance in the 

General Discussion.  

Experiment 2 

Although children in Experiment 1 demonstrated worse performance with ordinal 

numerical relations than magnitude numerical relations, even for symbolic number, the overall 

performance differences in the paradigm used in Experiment 1 does not provide specific insight 

into where children’s understanding of ordinal language goes wrong. In Experiment 2, we further 

address the question of how children map magnitude and ordinal vocabulary to symbolic number 

but make several modifications to the paradigm to allow for a better comparison of the two 

contexts and to test specific hypotheses about how children’s understanding of ordinal language 

systematically diverges from their understanding of magnitude language.  

In the prior experiment, the two values being compared were always about a 2-fold 

change apart (e.g., 4 vs. 8 or 3 vs. 6). This was deliberate to ensure that children would be able to 

visually discriminate the values (Cordes & Brannon, 2008; Xu et al., 2005), but it may have 

made the ordinal comparisons more difficult than the magnitude comparisons overall. As 

discussed in the Introduction, prior work on magnitude comparison typically reveals ratio or 

distance effects such that comparing values further apart is easier than values closer together 

(Moyer & Landauer, 1973). However, the opposite pattern has been shown for ordinal 

comparisons, such that values closer together are easier to compare than values further apart 

(Lyons & Ansari, 2015). Thus, it may be that testing far-apart values facilitated magnitude 

comparisons, while hindering ordinal comparisons. In Experiment 2, we include both 
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consecutive (e.g., 5 vs. 6) and non-consecutive (e.g., 5 vs. 7) relations to directly test this 

hypothesis.   

We made three additional modifications from the methods used in Experiment 1. First, 

we narrowed our age range slightly to focus on 4- through 6-year-olds, rather than 4- through 7-

year-olds, because data from Experiment 1 suggested that children were approaching ceiling at 

the upper end of the age range. Second, we did not include more/less because these terms are not 

entirely symmetric across continuous and discrete entities. Although the exact usage of each 

word is often debated, less is often meant to refer to continuous quantities and substances, 

whereas fewer is often more correct for discrete quantities. Thus, we chose to focus on 

bigger/smaller and after/before to streamline the number of required trials and more cleanly 

contrast relational terms that are unambiguously about magnitude and order, respectively. Third, 

we changed the paradigm and phrasing of the question to allow for a better comparison across 

magnitude and ordinal vocabulary: in Experiment 2, we use a yes/no relational verification task 

rather than a comparison task. In the prior experiment, the ordinal phrasing of the comparison 

task (“which comes before?” or “which comes after?”) may have been less familiar and more 

difficult to understand than the magnitude phrasing (e.g., “which is more?” or “which is 

bigger?”). Although only anecdotal from the authors’ experiences as English speakers, the 

question format of “which” may feel awkward and unusual for the words before/after (the 

ordinal words first, second, etc. might be more appropriate). Furthermore, an initial pilot study 

that changed the phrasing of the question but continued to use a comparison paradigm indicated 

that the comparison paradigm may mask children’s reasoning by forcing a choice between two 

suboptimal options. For example, when asked whether 3 or 7 comes after 5, children may believe 

that neither really comes after 5, but when forced to choose, decide that 7 is still a better option 
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than 3 (details of this experiment can be found in Supplemental and on the OSF project page). 

Instead, the yes or no verification paradigm does not rely on comparing the relations of multiple 

numbers and instead allows children to express their beliefs about specific relations 

independently.  

 Finally, we also included measures of children’s counting ability to provide an initial 

exploration of the potential mechanisms that might contribute to children’s systematic 

interpretation of ordinal language. Although we did not have strong a priori hypotheses, prior 

work suggests that children’s knowledge of the structure of counting is necessary for a range of 

early number concepts, but often not entirely sufficient (e.g., Cheung et al., 2017; Davidson et 

al., 2012; Schneider et al., 2019; Schneider et al., 2020). Thus, we were interested in exploring 

whether children’s knowledge of the symbolic count list would be related to their understanding 

of the ordinal relations before and after for symbolic numbers. Furthermore, given that we are 

most interested in children’s interpretation of ordinal relations beyond the next number, we 

included counting tasks that measured knowledge of the consecutive numbers in the count list, as 

well as children’s ability to count flexibly, including skip counting, backward counting, and 

counting from a number other than “one”.  

Thus, we had three research questions: (1) Do children’s judgements with ordinal and 

magnitude vocabulary differentially depend on whether the numbers being compared are 

consecutive? (2) How does age relate to children’s knowledge of these relational vocabulary 

terms? (3) How does counting ability, and in particular flexible counting, relate to children’s 

knowledge of the relational vocabulary? This experiment was pre-registered on OSF 

(https://osf.io/9pc2s) and all materials, data, and analysis code is available (https://osf.io/cv763).  

Method 

https://osf.io/9pc2s
https://osf.io/cv763%20a
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Participants 

The sample consisted of 60 4- to 6-year-old children (M = 5;5, age range from 4;0 to 6;9; 

24 girls, 22 boys, 14 undisclosed gender). An additional three children participated but are 

excluded because they did not complete the primary task of interest. This sample size was chosen 

a priori to provide 80% power for testing our central hypothesis (i.e., detecting an interaction 

between the two repeated measures of at least d = 0.6), as well as appropriate pairwise tests 

(based on power analyses and simulations reported in Brysbaert, 2019).  

Children were recruited from our lab database, Children Helping Science 

(childrenhelpingscience.com), and other advertisements and forums on social media. Data 

collection occurred from August 2020 to November 2020, and due to the COVID-19 pandemic, 

all children were tested over video chat using Zoom software. Parents completed an optional 

demographic survey (78% completed at least some of the demographic survey, of which 77% 

were mothers, 15% fathers, and 8% were nonbinary or did not disclose gender). Based on this 

subsample, parents reported that 11% of children identified as Asian, 9% as Black or African 

American, 89% as White, and 26% as Hispanic or Latino/a/x (parents could select multiple 

options). All children used English as a primary or secondary language at home, with 95% 

reporting it as their primary language. Parents were predominantly educated with at least a 

bachelor’s degree or equivalent (78%) and reported relatively high household incomes, with 60% 

reporting an annual family income of $100K or more, 26% between $50 to $99K, and 14% 

between $15 and $49K. All procedures were approved by the same institutional IRB, parents 

provided informed consent, and families were offered a $5 gift card via their email. 

Procedure 
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Children completed a Relational Verification task, probing Ordinal and Magnitude 

relations, and a battery of counting tasks. All tasks were administered by a trained research 

assistant over Zoom video chat software and took approximately 15-20 minutes to complete.  

 Relational Verification Task. The Relational Verification task was programmed in 

PsycoPy3 version 3.2.4 (but was also administered using PsychoPy2020 v2020.1.2 for some 

children). The task was presented via the screen sharing feature of Zoom. Prior to beginning the 

task, children were shown a “Ready?” screen that had a different image in each corner and 

children were asked what they saw. This screen was used as a warmup task (given that some 

children have lower comfort with video chat) and to help troubleshoot any issues with visibility 

of the screen on the child’s device.  

 The task consisted of two counterbalanced blocks: Ordinal and Magnitude (n = 30 per 

order). Each block consisted of 18 trials that presented children with a yes/no verification 

question about the given relation for that block, such as “Does 5 come after 4?”. These 18 trials 

included three trial types, with six trials each: directionally correct consecutive trials, 

directionally correct non-consecutive trials, and directionally incorrect trials. The directionally 

correct trials are the critical trials for testing our hypothesis, as they ask about numbers in the 

correct relational direction as the probe but were either consecutive or non-consecutive with 

respect to the comparison number. On the consecutive trials, the number was right next to the 

target number, in the relational direction being probed (e.g., “does 6 come after 5?” / “does 4 

come before 5?”). On the non-consecutive trials, the number was two away from the target 

number, in the correct relational direction being probed (e.g., “does 7 come after 5?” / “does 3 

come before 5?”). In contrast, the six directionally incorrect trials asked about numbers that were 

incorrect regardless of whether or not children used a narrow, consecutive interpretation of 
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before/after, because the numbers were relationally opposite of the correct answer (e.g., “does 2 

come after 4?” / “does 5 come before 4?”). These trials were included so that “yes” was not 

always the correct answer. Within each of the three trial types, there were two trials for each 

target number (4, 5, and 6) and half of the questions asked about the positive direction (after on 

the ordinal block and bigger on the magnitude block), while the other half asked about the 

negative direction (before on the ordinal block and smaller on the magnitude block).  

 On each trial (see Figure 4 for an example), children were shown the written question on 

the top of the screen (e.g., “Does this number come after 5?”), with the target number displayed 

large, centered, and below the question (e.g., “3”). The question was read aloud by the 

experimenter with the target number replacing the phrase “this number” (e.g., “Does three come 

after five?”). The child responded verbally, and the experimenter recorded the child’s response 

by pressing the “y” key for yes or the “n” key for no. Next, there was a 500ms intertrial pause 

with only a single dot in the center of the screen and then the next trial began. The experimenter 

repeated the questions as needed and provided general encouragement (e.g., “You’re doing 

great!”, “Let’s keep going!”), but did not provide feedback about correctness.  
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 After the verification trials, children were asked “how many numbers come after five?” in 

the ordinal block and “how many numbers are bigger than five?” in the magnitude block. The 

experimenter typed the child’s response as the child was speaking, omitting some aspects of 

child speech (e.g., ums) but capturing the key components of their response. These free 

responses were coded from the experimenter’s live-typed response, except for 5/120 responses 

that were re-typed from the video recordings because the experimenter indicated they mistyped 

or could not capture the child’s response live.  

 Counting Tasks. The battery consisted of four types of trials, always presented in this 

order: What’s Next, Flexible Forward, Flexible Backward, and Skip counting. For all trials, the 

experimenter administered the question verbally and recorded the child’s verbal responses via a 

Qualtrics survey. As pre-registered, children were given two counting scores: What’s Next score 

Figure 4: Example trials from Experiment 2 Magnitude Block 

(Panel A, upper) and Ordinal block (Panel B, lower). The screen 

was presented via screen sharing over video chat and the target 

question was asked verbally by the experimenter. 
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based on the proportion of trials correct on the What’s Next subtask and a Flexible Counting 

score based on the proportion of trials correct on the remaining subtypes (Flexible Forward, 

Flexible Backward, and Skip counting trials), calculated as the sum of the total number of 

problems correct out of the total number of problems administered.  

 The What’s Next task (Schneider et al., 2019) contained two practice trials followed by 

eight test trials. On each trial, children were given a target number and asked what number 

comes next (e.g., “if I say 23, what comes next?”) and the experimenter typed the child’s 

response verbatim. Children were given accurate and corrective feedback on the practice trials 

(targets: 1 and 5) but not on test trials (targets, asked in this order: 23, 29, 37, 40, 59, 62, 70, 86).  

 The Flexible Forward trials (Raudenbush et al., 2020) contained one practice trial 

followed by six test trials. On the practice trial, the experimenter demonstrated how to count 

starting at three by counting from three to eight, and then asked the child to count starting at 

three. On each test trial, children were asked to start counting from the given number and that the 

experimenter would tell them when to stop (test trials, administered in this order: 5 to 7, 18 to 21, 

6 to 12, 4 to 9, 21 to 24, 35 to 39).  

 The Flexible Backward trials (Raudenbush et al., 2020) contained a demonstration trial 

and six test trials. First, the experimenter demonstrated by counting from ten to one. On each test 

trial, children were asked to start counting backwards from the given number and that the 

experimenter would tell them when to stop (test trials, administered in this order: 5 to 1, 8 to 4, 

26 to 22, 13 to 9, 7 to 3, 18 to 14). Additionally, to ensure children remembered to count 

backwards, the experimenter started the sequence for them by providing the first two numbers 

(e.g., on the 5 to 1 trial: “Can you count backwards from five? Like this, five, four…”).  
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 The Skip counting trials contained a demonstration trial and three test trials. First, the 

experimenter demonstrated counting by 3s from three to fifteen (i.e., 3, 6, 9, 12, 15). On each test 

trial, children were asked to count by a given number and the experimenter told them when to 

stop (test trials, administered in this order: by 10s from 10 to 50, by 5s from 5 to 25, by 2s from 2 

to 10). As with backward counting, children were provided with the first two numbers in the 

sequence (e.g., “Can you count by 10s? Like this, ten, twenty…”).  

 On the Flexible Forward, Flexible Backward, and Skip counting trials, the experimenter 

typed the child’s response verbatim and live scored them as correct using a check box for 

analysis. Children were only scored correct if they started from the correct number (or the next 

number after the experimenter’s lead) and counted all numbers correctly in the target sequence. 

Throughout, the experimenter did not provide specific feedback on test trials but sometimes 

provided general encouragement to keep children engaged. 

Analysis Plan and Predictions 

 Our primary pre-registered analysis is a repeated measures ANOVA with Relation Block 

(2: Ordinal words vs. Magnitude words) and Trial Type (2: consecutive number vs. non-

consecutive number) as within-subject comparisons on children’s proportion correct on the 

critical directional trials, which ask about numbers on the correct side of the target but only 

varied in whether they were consecutive or not. To further interpret the results of this analysis, 

we also report comparisons to chance (although due to an oversight, the comparisons to chance 

were not included in the pre-registration). These analyses allowed us to test the question of 

whether children’s judgements show distinct patterns of dependence on the numerical distance of 

symbolic numbers for ordinal and magnitude judgements. We predicted that they would, 

resulting in an interaction between Relation and Trial Type, with the Ordinal Block showing 
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better performance (i.e., more “yes” responses) on the consecutive trials than the non-

consecutive trials (in line with reverse distance effects for ordinal judgements; Lyons & Ansari, 

2015; Turconi et al., 2006), and with the Magnitude Block showing a non-significant difference 

(given that a 2-fold change is typically easily discriminable in infancy; Cordes & Brannon, 2008) 

or a difference in the opposite direction (in line with typical distance effects for magnitude 

judgements; Moyer & Landauer, 1973). This analysis does not include the directionally incorrect 

trials because our hypothesis about children’s narrow interpretation of ordinal language does not 

make predictions about trials that are directionally inconsistent and are therefore incorrect for 

reasons that are irrelevant to consecutiveness. However, we do provide a brief descriptive 

analysis of these directionally incorrect trials to give a sense of children’s performance on 

unambiguous trials.  

 As another approach to addressing this question, we also coded children’s responses on 

the free-response questions of “how many numbers come after five?” and “how many numbers 

are bigger than five?”. We pre-registered coding children’s responses as suggesting either only a 

single number or more than one number satisfies the relation. Children were categorized as 

indicating a single number if they explicitly said “one” or if they said “six”, as they may have 

been answering the question of which number rather than how many. Children were categorized 

as indicating more than one number if they provided a single number larger than ten (e.g., a 

hundred), an approximate amount (e.g., a lot), or a list of numbers (e.g., 6, 7, 8, 9, 10). Smaller 

numbers (less than or equal to ten) other than one and six (e.g., “eight”), ambiguous responses 

(e.g., “the higher numbers”), and non-responses (including “I don’t know”) were not included in 

these categories. Smaller numbers other than one and six were not included because it is unclear 

whether children were answering how many or instead providing an example of a number that fit 
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the relation. Given the variability of children’s responses within these broader categories and the 

difficulty of interpreting some of their responses, a description of more detailed coding within 

each category and a breakdown of the data based on these narrower subcategories is provided in 

the Supplemental Materials. Two coders coded all responses and agreed on 95% (6/120 

disagreement). Disagreements were discussed and recoded.  

 As secondary analyses, we also planned a priori to investigate relations between 

children’s performance with the relational vocabulary and (a) their age in months and (b) their 

counting ability. In terms of children’s age, we did not pre-register a specific analysis plan or 

predictions. However, to provide some initial exploration of age-related patterns we analyzed 

correlations between children’s age in months and their performance on the ordinal and 

magnitude blocks, for both consecutive and non-consecutive trials. To explore the relations with 

counting, we pre-registered using correlations between performance on the ordinal and 

magnitude blocks and the two counting measures: What’s Next Task (Cronbach’s alpha = 0.91) 

and Flexible Counting composite (proportion of trials correct on the remaining three counting 

tasks calculated as the total number correct out of the 15 total trials administered; Cronbach’s 

alpha = 0.92). For each correlation (involving either age or counting), we have sensitivity (with n 

= 60 and 80% power) to detect correlations as small as .35, and as such may be underpowered to 

detect small correlations.  

Results and Discussion 

First, we analyzed performance on the directionally inconsistent trials where the correct 

answer was “no” (e.g., does 5 come after 7?). Overall, children did fairly well on these trials on 

both the ordinal block, M = 0.76, SD = 0.28, and the magnitude block, M = 0.74, SD = 0.33, 

performing above chance on both, ps < 0.001, and not significantly differently across the two 
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blocks, p = 0.73. Children’s relatively high performance on these trials suggests they did have at 

least some understanding of the vocabulary words being tested. 

Do children’s judgements with ordinal and magnitude vocabulary show distinct patterns of 

dependence on the consecutiveness of the numbers being compared?  

Positive Verifications on Directionally Consistent Trials. To test our primary 

hypothesis, we analyzed the proportion of trials on which children responded “yes” when the 

number was consistent with the probed relational direction (i.e., it was bigger than the target 

number when asking about after/bigger or was smaller than the target number when asking about 

before/smaller) using a 2 (Trial Type: Consecutive, Non-Consecutive) x 2 (Relation: Ordinal, 

Magnitude) repeated measures ANOVA (see Figure 5).  

The analysis revealed a main effect of Trial Type, F(1, 59) = 36.7, p < 0.001, 2
partial = 

0.38, a main effect of Relation, F(1, 59) = 54.3, p < 0.001, 2
partial = 0.48, and an interaction 

Figure 5: Children’s performance in Experiment 2 on the Magnitude and Ordinal blocks (separated on 

the x-axis), for the consecutive (dark gray) and non-consecutive (light grey) trials, when those trials 

are directionally consistent (e.g., “is four after three?”). Points are mean performance, error bars are 

standard error of the mean, and kernel density violin plots show the distribution of the underlying data. 

Dotted line is at the chance level of 0.5.  
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between Trial Type and Relation, F(1, 59) = 41.0, p < 0.001, 2
partial = 0.41. Given the 

interaction, we compared performance on the consecutive and non-consecutive trials within the 

ordinal and magnitude relations separately. When asked about order, children said the 

consecutive numbers came before/after the target number, M = 0.76, SD = 0.25, significantly 

more frequently than the non-consecutive numbers, M = 0.42, SD = 0.39, t(59) = 7.1, p < 0.001, 

d = 0.92. However, when asked about the magnitude of the numbers, children performed almost 

identically regardless of whether the numbers were consecutive, M = 0.86, SD = 0.21, or non-

consecutive, M = 0.86, SD = 0.22, t(59) < 0.001, p =1, d < 0.001.  

Moreover, overall performance was significantly above chance when judging magnitude 

of both consecutive and non-consecutive numbers, p < 0.001. However, on the ordinal trials, 

performance was above chance for consecutive numbers, p < 0.001, and not significantly 

different from chance on non-consecutive numbers, p = 0.10. 

Thus, in line with our hypothesis, children’s performance reveals a narrow interpretation 

of before and after to be immediately before or after, despite knowing that both consecutive and 

non-consecutive numbers share the same magnitude relations. Next, we tested whether this same 

pattern is evident in children’s explicit verbal responses about the same relations. 

Open Ended Responses. The number of children whose responses fall into each of our 

categories are presented in Table 2. About a third of the children’s responses were categorized as 

no response or ambiguous, and these children are not considered further in our analyses. When 

considering the two categories of interest (Single Number vs. Multiple Numbers), fewer than a 

quarter of the children indicated that only a single number was bigger than five (10%) or came 

after five (22%). On the other hand, around half the children responded in a way consistent with 

a belief that multiple numbers could be after five (47%) or bigger than five (52%). A chi-squared 
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contingency table test on the two categories of interest between the ordinal (after) and magnitude 

(bigger) relations was not significant, 2 = 1.76, p = 0.18. Thus, unlike their behavioral 

responses, children’s verbal responses suggest that they did not have an overwhelming tendency 

to say that only a single number came after or was bigger than five and their pattern of responses 

did not significantly differ for ordinal or magnitude relations.  

 

Table 2: The Distribution of Children’s Open-Ended Responses 

 
“How many numbers 

come after five?” 

“How many numbers are 

bigger than five?” 

Response Category n proportion n proportion 

Single Number 13  0.22  6  0.10  

Multiple Numbers 28  0.47  31  0.52  

No Response or Ambiguous Response 19 0.32 23 0.38 

 

   

Together, these findings suggest that many children provide a verbal response indicating 

that many numbers come after 5, but still respond on ordinal verification judgements with the 

vocabulary before/after as if the number 6, but not the number 7, comes after 5. In order words, 

children’s behavior reflects a systematically narrow interpretation of the ordinal vocabulary 

words before/after, regardless of whether they articulated this narrow interpretation.  

How does age relate to children’s knowledge of relational vocabulary?  

As secondary analyses, we were also interested in how children’s narrow interpretation of 

order may vary across development. Children were evenly sampled across the three annual age 
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bins within the larger sample (20 each of 4-, 5-, and 6-years-olds) and we analyzed continuous 

age in months.  

As is evident from Figure 6, the difference in children’s scores on consecutive and non-

consecutive directionally consistent trials significantly increased across the age range tested: 

correlation between age and Consecutive – Non-Consecutive Score, r = 0.44, p < 0.001. 

Specifically, children’s scores significantly increased on consecutive trials, r = 0.33, p = 0.01, 

but there was a negative, although not significant, relation between age and scores on the non-

consecutive trials, r = -0.22, p = 0.09.  

This pattern was not found for magnitude scores, which were relatively high across the 

age group tested and did not significantly correlate with age: difference score r = -0.01, p = 0.97; 

consecutive trials, r = 0.13, p = 0.32; non-consecutive trials, r = 0.13, p = 0.33.  
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How does counting ability relate to children’s knowledge of relational language? 

One child was excluded from these analyses because they did not complete the counting 

task, leaving a sample of 59 children. To investigate the relation between counting ability and 

children’s relational knowledge, we analyzed bivariate correlations between children’s scores on 

the ordinal block (on the three trial types separately: Directionally Correct & Consecutive, 

Directionally Correct & Non-consecutive, and Directionally Incorrect) and both the What’s Next 

measure and the Flexible Counting measure (i.e., the composite of flexible forward, backward, 

Figure 6: Correlation between children’s age in months (x-axis) and their scores on the 

ordinal (left panel) and magnitude (right panel) judgement tasks, separated by 

consecutive (grey, dashed) and non-consecutive (black, solid) trials. Only directionally 

consistent trials are included. Some jitter has been added to the points to view 

overlapping data more easily. Note that the two lines on the plot of the magnitude 

judgements are very overlapping, making it difficult to see them separately.  
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and skip counting3). To investigate whether these relations were unique to ordinal relations, we 

used the same analyses with scores from the magnitude trials. Table 3 displays these correlations 

and the descriptive statistics of the counting scores.  

Table 3: Correlation between the counting tasks and relational judgements  

  
 

Ordinal Comparisons Magnitude Comparisons 

  

 
Directionally 

Correct 

Directionally 

Incorrect 

Directionally 

Correct 

Directionally 

Incorrect 

 
Mean 

(SD) 

 

C Non-C 
Combined 

C & Non-C 
C Non-C 

Combined 

C & Non-C 

What’s Next 

Task 

0.59 

(0.38) 

r .38** -.11 .54*** .29* .09 .51*** 

p .003 .39 < 0.001 .03 .48 < .001 

Flexible 

Counting 

0.58 

(0.32) 

r .33** -.16 .62*** .31* .15 .54*** 

p .01 .22 < 0.001 .02 .26 < 0.001 

Note: C = consecutive trials, Non-C = Non-Consecutive trials; Trials assessing the incorrect polar 

direction are collapsed across consecutiveness because there are only three trials of each type 

* p < 0.05, ** p < 0.01, *** p < 0.001 

 

First, both the What’s Next task and the Flexible Counting composite scores positively 

correlated with children’s ability to judge directionally correct consecutive numbers in terms of 

ordinal vocabulary (i.e., that 5 does come after 4 or 3 does come before 4), but neither 

significantly correlated with children’s performance on directionally correct non-consecutive 

trials. These correlations of the counting tasks with the ordinal consecutive and non-consecutive 

correct trials significantly differed from each other: What’s Next: z = 3.61, p < 0.001, Flexible 

Counting: z = 3.60, p < 0.001. It is also worth noting that although not significant, the 

 
3 When each component of the composite Flexible Counting measure is analyzed separately, we find a similar 

pattern as is reported for the overall composite. This suggests that combining the measures in this way does not 

obscure distinct patterns across trial types.  
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correlations with children’s ability to judge non-consecutive trials in terms of ordinal vocabulary 

are numerically negative. Finally, there were also large significant correlations with children’s 

scores on the directionally inconsistent trials for ordinal vocabulary, where children needed to 

say “no” (e.g., does 4 come after 5?).  

A similar pattern was found for judgements of magnitude, with significant correlations 

between counting and consecutive magnitude trials, but not non-consecutive magnitude trials. 

However, in contrast to the ordinal judgements, all the correlations are numerically positive, and 

the size of the correlation did not significantly differ between consecutive and non-consecutive 

trials: What’s Next, z = 1.62, p = 0.10, or Flexible Counting, z = 1.33, p = 0.18. There were also 

large significant correlations with children’s scores on the directionally inconsistent trials. 

Thus, it appears that children’s counting knowledge positively predicts their ability to 

correctly reject directionally inconsistent relations and positively verify directionally consistent 

relations for consecutive values, for both ordinal and magnitude relations. Moreover, there are 

slight, albeit non-significant, negative correlations between counting and ordinal judgements on 

the non-consecutive trials.  

Summary of Experiment 2 

In Experiment 2, our primary goal was to investigate whether children’s judgements with 

ordinal and magnitude vocabulary differentially depended on whether the numbers being 

compared are consecutive. Overall, we find that they do – children’s ordinal judgements varied 

for consecutive vs. non-consecutive numbers, while their magnitude judgements did not. 

Specifically, children did not endorse the use of the words before or after for non-consecutive 

numbers but did endorse the use of the magnitude words bigger and smaller regardless of 

consecutiveness.  
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General Discussion 

 Across two experiments, we investigated children’s understanding of vocabulary words 

for mathematical relations involving magnitude comparison and order. We find that when 

comparing quantities and amounts, children demonstrate lower understanding of the ordinal 

vocabulary words before and after compared to magnitude vocabulary words bigger, smaller, 

more, and less across all three quantitative contexts: symbolic number, discrete non-symbolic 

number, and continuous area (Experiment 1). Further, in the context of symbolic numbers, 

children’s errors across ordinal and magnitude vocabulary show systematically distinct patterns, 

with children applying ordinal vocabulary more narrowly than magnitude vocabulary 

(Experiment 2). Together, these findings suggest some divergence between children’s 

understanding of relational vocabulary words for ordinal and magnitude comparisons.  

These findings identify a salient difference but leave open the question of what causes 

this divergence. We discuss three possible explanations, which are neither exhaustive nor 

mutually exclusive, but can set the foundation for generating several important hypotheses and 

future directions for better understanding the development of children’s ordinal and magnitude 

knowledge: (1) children’s underlying conception of magnitude and (conventionalized) order are 

at least somewhat independent, (2) children learn to interpret relational language referring to 

ordinal and magnitude relations in distinct ways, and (3) children have an understanding of 

language referring to magnitude and ordinal relations, but have difficulty extracting relevant 

magnitude and/or ordinal information when needed because aspects of their number knowledge 

are weighted differently when interpreting vocabulary words for magnitude versus ordinal 

judgements. We discuss each of these possible explanations in turn.   
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 First, it may be that children’s underlying number knowledge does not include well 

integrated concepts of relative magnitude and order, and instead these two relations are at least 

somewhat independent. This explanation is consistent with other work comparing people’s 

understanding of magnitude and ordinal relations in the absence of specific relational 

vocabulary, which similarly reveal that consecutive numbers are privileged over non-consecutive 

numbers for ordinal processing (Turconi et al., 2006) and demonstrate divergences in terms of 

how children’s performance judging each relation predicts their later math ability (Lyons et al., 

2014). Notably, however, this divergence between magnitude and order may specifically be in 

terms of conventionalized numerical order. Given the early emergence of ordering magnitudes 

(e.g., Anderson & Cordes, 2013) and that typical theories of numerical magnitude represent 

number on a well ordered continuum (Dehaene, 2011; Dehaene et al., 1998), we are not arguing 

that the representation of magnitude values does not have an ordered component. Rather, 

conventional order in the context of symbolic numbers and a learned count list may lead to 

divergence of ordinal and magnitude concepts in the context of symbolic number, which in turn 

account for the different patterns seen for the ordinal and magnitude relational verification task. 

Future work could investigate how children’s conceptions of conventionalized numerical order 

and magnitude-based ordinal relations are related both to each other and to other aspects of early 

number knowledge, including magnitude comparison and counting.  

 Second, given that our paradigm was specifically focused on children’s understanding of 

comparative vocabulary, a natural explanation of the results is in terms of children’s 

understanding of these words. Although Experiment 1 revealed lower understanding of ordinal 

vocabulary compared to magnitude vocabulary in general, Experiment 2 suggests a systematic 

difference in how children interpret ordinal vocabulary compared to magnitude vocabulary. It 
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may be that children’s narrow interpretation of ordinal vocabulary reflects an immature 

understanding of these words, relative to magnitude words. Notably, given that children are not 

learning the words before and after for the first time in a numerical context, but instead are 

applying these already-known temporal words to numerical information, an important next 

question is whether this immature understanding of ordinal vocabulary is unique to symbolic 

number or if it is evident in temporal contexts as well. If it is the former, and this pattern of 

interpreting ordinal vocabulary is unique to numerical contexts, then what is it about numerical 

contexts that leads to these systematic patterns? One possibility is that the conventional order of 

numerical information through the count list leads to a narrow interpretation of ordinal 

vocabulary. For example, we find that children’s counting knowledge was related to their 

judgements of consecutive numbers, but not their judgements of non-consecutive numbers, 

which might indicate that counting, and even flexible counting, highlights the consecutiveness of 

numbers. However, similar relations to counting were found for magnitude vocabulary as well, 

leaving open the question of why children do not generalize this same narrow interpretation to 

both ordinal and magnitude vocabulary. Future work could investigate children’s interpretation 

of ordinal vocabulary across a range of contexts (e.g., temporal events, the alphabet, 

monotonically ordered continuous area) to better understand how children apply the same ordinal 

vocabulary across different contexts that have different degrees of conventionalized order versus 

magnitude-based order, as well as what aspects of children’s experience (e.g., parents use of 

ordinal and magnitude vocabulary, counting knowledge or experience) might be impacting their 

learning of these words.  

 Finally, a third possibility is that children rely on different strategies for extracting 

magnitude and ordinal information when needed, leading to performance differences across 
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magnitude and ordinal contexts. Because magnitude and order may be intrinsically connected in 

the context of symbolic number, children’s understanding of “more” when comparing two 

symbolic numbers is typically interpreted as ordinal knowledge, or understanding of the “later-

greater” principle (e.g., Davidson et al., 2012; Le Corre, 2014). It may be that children’s ability 

to judge relative magnitude, and in this case interpret magnitude vocabulary, draws upon this 

“later-greater” concept allowing them to seamlessly integrate both pieces of information: “later” 

(i.e., understanding what numbers are later in the count list) and “greater” (i.e., understanding the 

relative magnitudes of those numbers). In contrast, children may rely on other strategies when 

asked about ordinal relations, such as strategies that more directly rely on conventional order, 

including counting or successor knowledge (i.e., knowing the next number) and these different 

strategies result in different patterns of performance. Although the age-related patterns found in 

the current study should be interpreted with caution, they do generate some possible hypotheses 

that could be tested in future work. Research on the successor function suggests that it is 

typically mastered at around 5.5 to 6-years-old (e.g., Davidson et al., 2012; Schneider et al., 

2020), around the same age that the children in our sample robustly applied ordinal vocabulary to 

discrete non-symbolic sets (Experiment 1) and showed a stronger narrow interpretation of 

ordinal vocabulary in symbolic contexts (Experiment 2). Future work could investigate whether 

the acquisition of the successor function is related to children’s narrow interpretation of ordinal 

vocabulary and/or to their strategy use on other ordinal and magnitude tasks, and if so, what the 

causal direction might be and how it could be leveraged to support learning.  

Limitations 

 The current study is of course not without limitations. First, most children in our samples 

came from high-income households with at least one college educated parent, which limits both 
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our ability to investigate the effect of these factors (e.g., socioeconomic status) on children’s 

understanding of relational vocabulary and our ability to generalize these findings to children 

with different experiences, particularly with different exposure to early number concepts. 

Second, although Experiment 1 was conducted in person using traditional developmental 

psychology approaches (e.g., museums, lab testing), Experiment 2 was conducted entirely online 

through video chat during the COVID-19 pandemic. As the field continues to explore online data 

collection, it is important to keep in mind the benefits, pitfalls, and best practices of online data 

collection in general (e.g., Lourenco & Tasimi, 2020; Sheskin et al., 2020), as well as its role 

during a pandemic, which may offer unique challenges for both logistics and generalizability. A 

third limitation is our sample size. Although preregistered and sufficient to detect approximately 

medium effects on our primary analyses of interest, the sample sizes limited our ability to detect 

smaller effects and explore other individual differences across subgroups. Most notably, 

substantial number learning typically occurs during the relatively narrow age range used in the 

current experiments (4 to 6 or 7 years old), making age-related patterns in our tasks particularly 

interesting. However, our sample size limited our ability to investigate developmental patterns, 

leaving it to future work to test our proposed age-related hypotheses more fully. Finally, and 

relatedly, the current study was entirely correlational, again limiting our ability to make any 

claims about the causal nature of children’s understanding of relational language. Importantly, 

however, the current study lays the foundation for investigating causal relations by generating 

several hypotheses that could be tested in future work.  

Conclusion 

 In summary, we investigated 4- to 7-year-old children’s knowledge of ordinal and 

magnitude vocabulary for comparing quantities, both symbolically and non-symbolically. We 
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find evidence of both general and systematic differences between children’s performance 

judging quantities in terms of ordinal language versus magnitude language, suggesting a 

dissociation between children’s understanding of these two concepts and/or the language used to 

communicate about them. These findings suggest promising new directions for investigating the 

potentially privileged status of consecutive numbers in children’s early numerical reasoning, the 

role of counting knowledge in this reasoning, and what role language might play in children’s 

learning of numerical relations, including how magnitude and ordinal relations are related to 

each other.   
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